Pau d'Arco • Wintergreen Oil • Gum Arabic • Spearmint Oil • Grapefruit rind extract • Leptotoenia Oil.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product 4 FungDX. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of periwinkle.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product 4 FungDX. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Grapefruit has Generally Recognized as Safe status (GRAS) in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes. A grapefruit seed extract has been safely used in clinical research (5866). In addition, capsules containing grapefruit pectin 15 grams daily have been used in clinical research for up to 16 weeks (2216).
POSSIBLY UNSAFE ...when used orally in excessive amounts. Preliminary population research shows that consuming a quarter or more of a whole grapefruit daily is associated with a 25% to 30% increased risk of postmenopausal breast cancer (14858). Grapefruit juice is thought to reduce estrogen metabolism resulting in increased endogenous estrogen levels. More evidence is needed to validate this finding.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of using medicinal amounts of grapefruit during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately in amounts commonly found in foods. Gum arabic has Generally Recognized As Safe (GRAS) status for use in foods in the US. It is also considered to be safe for use as a food additive by the European Food Safety Authority (4912,105040).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (8072). Up to 30 grams daily of powdered gum arabic has been used with apparent safety for 3 months (18237,99098,105040).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than those found in foods (4912,105040).
POSSIBLY UNSAFE ...when used orally. The safety of pau d'arco in typical doses is unclear. Serious toxicities have been found with high doses of the lapachol constituent (91939). In patients with cancer, doses of lapachol above 1.5 grams daily were associated with significant gastrointestinal toxicities and an increased risk of bleeding (91939). However, in patients with dysmenorrhea, doses of pau d'arco 1050 mg plus rutin 75 mg daily for up to 8 weeks did not lead to serious adverse effects (114012). There is insufficient reliable information available about the safety of pau d'arco when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally in typical doses.
Animal studies have found that lapachol, a constituent of pau d'arco, has teratogenic and abortifacient effects (68314,68315); avoid using. There is insufficient reliable information available about the safety of pau d'arco when used topically in pregnancy; avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods. Spearmint and spearmint oil have Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally or topically for medicinal reasons (11,12). Spearmint extract up to 900 mg daily has been used safely for up to 90 days (94925,101713,101714). Spearmint tea has been consumed safely twice daily for up to 16 weeks (68500,94923).
PREGNANCY: LIKELY SAFE
when used in the amounts commonly found in foods (4912).
PREGNANCY: POSSIBLY UNSAFE
when used orally during pregnancy in excessive amounts.
Animal research suggests that spearmint tea may cause uterine damage (68448). Avoid using in amounts greater than those typically found in foods during pregnancy.
LACTATION: LIKELY SAFE
when used in the amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of spearmint during lactation. Avoid using in amounts greater than those typically found in foods.
LIKELY SAFE ...when used orally in very small amounts commonly found in foods. Wintergreen oil has Generally Recognized As Safe status (GRAS) in the US (4912) The highest concentration recommended for use as a food flavoring is 0.04% (6).
POSSIBLY SAFE ...when wintergreen leaf is used orally and appropriately in medicinal amounts (12). ...when wintergreen oil is used topically and appropriately (272).
POSSIBLY UNSAFE ...when wintergreen oil is used orally. Wintergreen oil contains large amounts of methyl salicylate, which is toxic (272). Ingesting as little as 6 mL can be lethal for an adult (6). One teaspoon (5 mL) of wintergreen oil is equivalent to approximately 7 grams of salicylate, or more than 20 adult aspirin tablets (6).
CHILDREN: LIKELY UNSAFE
when wintergreen oil is used orally.
Ingesting as little as 4 mL can be lethal to children (159). ...when wintergreen oil is used topically in children less than 2 years old (272).
PREGNANCY:
Insufficient reliable information is available; avoid using in amounts greater than those found in foods.
LACTATION: LIKELY UNSAFE
when used orally or topically.
Wintergreen products are likely toxic to nursing infants (19).
Below is general information about the interactions of the known ingredients contained in the product 4 FungDX. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Grapefruit juice can decrease blood levels of acebutolol, potentially decreasing the clinical effects of acebutolol.
Details
Clinical research shows that grapefruit juice can modestly decrease acebutolol levels by 7% and reduce peak plasma concentration by 19% by inhibiting organic anion transporting polypeptide (OATP) (17603,18101). The acebutolol half-life is also extended by 1.1 hours when grapefruit juice is consumed concomitantly (18101). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of aliskiren, potentially decreasing the clinical effects of aliskiren.
Details
Clinical research shows that grapefruit juice can decrease aliskiren levels by approximately 60% by inhibiting organic anion transporting polypeptide (OATP) (91428). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of amiodarone, potentially increasing the effects and adverse effects of amiodarone.
Details
|
Grapefruit juice might decrease blood levels of amprenavir, although this is not likely to be clinically significant.
Details
Some clinical research shows that grapefruit juice can slightly decrease amprenavir levels (17673); however, this is probably not clinically significant.
|
Grapefruit juice can increase blood levels of oral artemether, potentially increasing the effects and adverse effects of artemether.
Details
|
Grapefruit juice might increase blood levels of some oral benzodiazepines, potentially increasing the effects and adverse effects of these drugs.
Details
Clinical research shows that grapefruit juice can increase plasma triazolam concentrations. Repeated consumption of grapefruit juice greatly increases triazolam concentrations and prolongs the half-life, probably due to inhibition of cytochrome P450 3A4 (CYP3A4) (7776,22118,22131,22133). Some studies show that grapefruit juice, particularly when taken in large quantities, reduces the clearance and increases the maximum blood levels, area under the plasma concentration curve (AUC), and duration of effect of midazolam. However, there is no effect on intravenous midazolam (4300,10159,11275,17601,22117,22119,16711,91427,95978). Grapefruit juice has also been shown to increase the maximum blood levels and duration of effect of diazepam, but the clinical significance of this is not known (3228). This interaction does not appear to occur with alprazolam (17674).
|
Grapefruit juice can increase blood levels of blonanserin, potentially increasing the effects and adverse effects of blonanserin.
Details
Blonanserin is metabolized primarily by cytochrome P450 3A4 (CYP3A4). A small clinical study shows that taking grapefruit juice along with oral blonanserin increases exposure to blonanserin almost 6-fold due to inhibition of intestinal CYP3A4 by grapefruit juice and prolongs the elimination half-life of blonanserin by 2.2-fold due to inhibition of hepatic CYP3A4 by grapefruit juice (96943).
|
Grapefruit juice can increase blood levels of budesonide, potentially increasing the effects and adverse effects of budesonide.
Details
Budesonide is metabolized by cytochrome P450 3A4 (CYP3A4). A small clinical study shows that taking grapefruit juice along with oral budesonide increases the plasma concentration of budesonide. This effect is attributed to grapefruit-induced inhibition of CYP3A4 in both the colon and small intestine (91425).
|
Grapefruit juice can increase blood levels of buspirone, potentially increasing the effects and adverse effects of buspirone.
Details
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of buspirone (3771).
|
Grapefruit juice can decrease the clearance of caffeine, potentially increasing the effects and adverse effects of caffeine.
Details
Clinical research shows that grapefruit juice decreases caffeine clearance (4300).
|
Grapefruit juice can increase blood levels of oral calcium channel blockers, potentially increasing the effects and adverse effects of these drugs.
Details
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of amlodipine (523), nifedipine (528,22114), nisoldipine (529), verapamil (7779,8285), felodipine, nimodipine, nicardipine, diltiazem, pranidipine, nitrendipine, and manidipine (524,528,1388,4300,7780,11276,22136,53338,22138,22139) (22140,22141,22142,22143,22147,22148,22149,53367,22158),
This interaction is likely the result of the inhibition of intestinal metabolism of these drugs by CYP3A4 (7779,7780), although some research suggests grapefruit may alter plasma drug levels by reducing the rate of gastric emptying (22167). Consuming grapefruit juice 1 liter daily increases steady state concentrations of verapamil by as much as 50% (8285). However, some references dispute the clinical relevance of the interactions with amlodipine, diltiazem, and verapamil (3230,4300,22159). Other research in healthy individuals suggests plasma levels of felodipine and nifedipine are not affected when given intravenously (22144,22146). There is considerable interindividual variability in the effect of grapefruit juice on drug metabolism, which might account for inconsistent study results (7777,7779,8285). In healthy older adults, the hemodynamic response to felodipine plus grapefruit juice might be influenced by altered autonomic regulation. In older healthy adults, a single dose of grapefruit juice and felodipine enhanced the blood pressure-lowering effects of felodipine. However, after a week of grapefruit juice and felodipine (steady state), the hypotensive activity was reduced, possibly due to compensatory tachycardia (1392). Research indicates it is necessary to withhold grapefruit juice for as long as 3 days to avoid interactions with felodipine and nisoldipine (5068,5069,6453,22145).
|
Grapefruit juice can increase blood levels of carbamazepine, potentially increasing the effects and adverse effects of carbamazepine.
Details
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of carbamazepine (524).
|
Grapefruit juice can increase blood levels of carvedilol, potentially increasing the effects and adverse effects of carvedilol.
Details
Clinical research shows that grapefruit juice increases the bioavailability of a single dose of carvedilol by 16% (5071).
|
Grapefruit juice can decrease blood levels of celiprolol, potentially decreasing the clinical effects of celiprolol.
Details
In human research, taking grapefruit juice within two hours of celiprolol appears to decrease absorption and blood levels of celiprolol by approximately 85% (91421). This interaction is due to grapefruit-induced inhibition of organic anion transporting polypeptide (OATP) (17603,17604,22161). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of cisapride, potentially increasing the effects and adverse effects of cisapride.
Details
|
Theoretically, grapefruit juice might increase blood levels of clomipramine, potentially increasing the effects and adverse effects of clomipramine.
Details
Case reports have shown that clomipramine trough levels increase significantly after the addition of grapefruit juice to the therapeutic regimen (5064).
|
Grapefruit juice can decrease blood levels of the active metabolite of clopidogrel, thereby decreasing the antiplatelet effect of clopidogrel.
Details
Clopidogrel is an antiplatelet prodrug that is metabolized primarily by cytochrome P450 2C19 (CYP2C19) to form the active metabolite. A small clinical study shows that taking grapefruit juice with clopidogrel decreases plasma levels of the active metabolite by more than 80% and impairs the antiplatelet effect of clopidogrel. This effect is possibly due to grapefruit-induced inhibition of CYP2C19 (91419).
|
Theoretically, grapefruit juice might increase blood levels of colchicine, potentially increasing the effects and adverse effects of colchicine.
Details
Colchicine is an alkaloid that undergoes P-glycoprotein (P-gp) mediated drug efflux in the intestines, followed by metabolism by cytochrome P450 3A4 (CYP3A4). There is concern that grapefruit juice will increase the effects and adverse effects of colchicine due to grapefruit-induced inhibition of P-gp and/or CYP3A4. In vitro evidence shows that grapefruit juice increases absorption of colchicine by inhibiting P-gp (94158). A case of acute colchicine toxicity has been reported for an 8-year-old female who drank grapefruit juice while taking high-dose colchicine, long-term (94157). However, one small clinical study in healthy adults shows that drinking grapefruit juice 240 mL twice daily for 4 days does not affect the bioavailability or adverse effects of a single dose of colchicine 0.6 mg taken on the fourth day (35762).
|
Grapefruit juice can increase blood levels of oral cyclosporine, potentially increasing the effects and adverse effects of cyclosporine.
Details
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP1A2.
Details
In vitro research suggests that grapefruit juice might inhibit CYP1A2 enzymes (12479). So far, this interaction has not been reported in humans.
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP2C19.
Details
In vitro research suggests that grapefruit juice might inhibit CYP2C19 enzymes (12479). Also, a small clinical study shows that taking grapefruit juice with clopidogrel, an antiplatelet prodrug that is metabolized primarily by CYP2C19, decreases plasma levels of the active metabolite and impairs the antiplatelet effect of clopidogrel. This effect is likely due to grapefruit-induced inhibition of CYP2C19 (91419).
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP2C9.
Details
In vitro research suggests that grapefruit juice might inhibit CYP2C9 enzymes (12479). So far, this interaction has not been reported in humans.
|
Grapefruit juice can increase levels of drugs metabolized by CYP3A4.
Details
Clinical research shows that grapefruit juice can inhibit CYP3A4 metabolism of drugs, causing increased drug levels and potentially increasing the risk of adverse effects (3227,3774,8283,8285,8286,22129,91427,104190). When taken orally, effects of grapefruit juice on CYP3A4 levels appear to last at least 48 hours (91427). Grapefruit's ability to inhibit CYP3A4 has even been harnessed to intentionally increase levels of venetoclax, which is metabolized by CYP3A4, in an elderly patient with acute myeloid leukemia who could not afford full dose venetoclax. The lower dose of venetoclax in combination with grapefruit juice resulted in serum levels of venetoclax in the therapeutic reference range of full dose venetoclax and positive treatment outcomes for the patient (112287).
Professional consensus recommends the consideration of patient age, existing medical conditions, additional medications, and the potential for additive adverse effects when evaluating the risks of concomitant use of grapefruit juice with any medication metabolized by CYP3A4. While all patients are at risk for interactions with grapefruit juice consumption, patients older than 70 years of age and those taking multiple medications are at the greatest risk for a serious or fatal interaction with grapefruit juice (95970,95972). |
Grapefruit juice can increase blood levels of dapoxetine, potentially increasing the effects and adverse effects of dapoxetine.
Details
Pharmacokinetic research shows that drinking grapefruit juice 250 mL prior to taking dapoxetine 60 mg can increase the maximum plasma concentration of dapoxetine by 80% and prolong the elimination half-life by 43%. This effect is attributed to the inhibition of both intestinal and hepatic cytochrome P450 3A4 (CYP3A4) by grapefruit (95975).
|
Grapefruit juice can increase blood levels of dextromethorphan, potentially increasing the effects and adverse effects of dextromethorphan.
Details
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism, causing increased dextromethorphan levels (11362).
|
Grapefruit juice can increase blood levels of erythromycin, potentially increasing the effects and adverse effects of erythromycin.
Details
Clinical research shows that concomitant use of erythromycin with grapefruit can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of erythromycin, increasing plasma concentrations of erythromycin by 35% (8286).
|
Grapefruit juice can increase blood levels of estrogens, potentially increasing the effects and adverse effects of estrogens.
Details
Clinical research shows that grapefruit increases the levels of endogenous and exogenous estrogens by inhibiting cytochrome P450 3A4 (CYP3A4) enzymes (525,526,14858). Grapefruit juice increases exogenously administered 17-beta-estradiol by about 20% in females without ovaries and ethinyl-estradiol in healthy females (525,526,22160).
|
Grapefruit juice can decrease blood levels of etoposide, potentially decreasing the clinical effects of etoposide.
Details
Clinical research shows that grapefruit juice decreases the absorption and plasma concentrations of etoposide. There is some evidence that grapefruit juice co-administered with oral etoposide can reduce levels of etoposide by about 26% (8744). Grapefruit juice seems to inhibit organic anion transporting polypeptide (OATP), which is a drug transporter in the gut, liver, and kidney (7046,17603,17604). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of fexofenadine, thereby decreasing the clinical effects of fexofenadine.
Details
Clinical research shows that grapefruit juice can significantly decrease oral absorption and blood levels of fexofenadine. In one study, consuming a drink containing grapefruit juice 25% decreased bioavailability of fexofenadine by about 24%. Consuming a full-strength grapefruit juice drink reduced bioavailability by 67% (7046). In another study, consuming grapefruit juice 300 mL decreased fexofenadine levels by 42%. Consuming 1200 mL of grapefruit juice reduced levels by 64% (17602). Similarly, drinking grapefruit juice 240 mL decreased the oral bioavailability of fexofenadine by 25% in another pharmacokinetic study (112288). Fexofenadine manufacturer data indicates that concomitant administration of grapefruit juice and fexofenadine results in larger wheal and flare sizes in research models. This suggests that grapefruit also reduces the clinical response to fexofenadine (17603).
Grapefruit juice seems to inhibit organic anion transporting polypeptide (OATP), which is a drug transporter in the gut, liver, and kidney (7046,17603,17604,22161). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604). |
Grapefruit juice can increase blood levels of fluvoxamine, potentially increasing the effects and adverse effects of fluvoxamine.
Details
Clinical research shows that grapefruit juice inhibits metabolism and increases fluvoxamine levels and peak concentration (17675).
|
Grapefruit juice can increase blood levels of halofantrine, potentially increasing the effects and adverse effects of halofantrine.
Details
Clinical research shows that grapefruit juice inhibits cytochrome P450 3A4 (CYP3A4) metabolism, which increases halofantrine levels and peak concentration, as well as a marker of ventricular tachyarrhythmia potential (22129).
|
Grapefruit juice can increase blood levels of statins that are metabolized by cytochrome P450 3A4 (CYP3A4), potentially increasing the effects and adverse effects of these statins. Additionally, grapefruit juice might interfere with the bioavailability of statins that are substrates of organic anion transporting polypeptides (OATP).
Details
Clinical research shows that grapefruit juice inhibits metabolism and increases absorption and plasma concentrations of statins that are metabolized by CYP3A4. These include lovastatin (527,11274), simvastatin (3774,7782,22127), and atorvastatin (3227,12179,22126). Keep in mind that there is considerable variability in the effect of grapefruit juice on drug metabolism, so individual patient response is difficult to predict (7777,7781).
Some statins, including pravastatin, fluvastatin, pitavastatin, and rosuvastatin, are not metabolized by CYP3A4. However, grapefruit juice might still affect the bioavailability of these statins. These statins are substrates of OATP. Grapefruit juice can inhibit OATP. Therefore, grapefruit juice may reduce the bioavailability or increase drug levels of these statins depending on the type of OATP. However, grapefruit juice affects OATP for only a short time. Therefore, separating drug administration by at least 4 hours is likely to avoid this interaction (3227,12179,17601,22126,91420). |
Grapefruit juice can interfere with itraconazole absorption, although the clinical significance of this interaction is unclear.
Details
|
Grapefruit juice can decrease blood levels of levothyroxine, potentially decreasing the effectiveness of levothyroxine.
Details
Clinical research shows that grapefruit juice modestly decreases levothyroxine levels by 11% by inhibiting organic anion transporting polypeptide (OATP) (17604,22163). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of the active metabolite of losartan, potentially decreasing the clinical effects of losartan.
Details
Losartan is an inactive prodrug which must be metabolized to its active form, E-3174, to be effective. In one human study, grapefruit juice reduced losartan metabolism, increased losartan AUC, and reduced the AUC of the major active losartan metabolite, E-3174 (1391).
|
Grapefruit juice can increase blood levels of methadone, potentially increasing the effects and adverse effects of methadone.
Details
Clinical research shows that grapefruit juice inhibits the metabolism of methadone, increasing methadone levels and peak concentrations (17676). In one case, a 51-year-old male taking methadone 90 mg daily and no other medications was found unresponsive. The patient reported drinking grapefruit juice 500 mL daily for 3 days prior to the event. Methadone is a substrate of cytochrome P450 3A4 (CYP3A4), and grapefruit juice-induced inhibition of CYP3A4 is the likely cause of this interaction (102056).
|
Grapefruit juice can increase blood levels of methylprednisolone, potentially increasing the effects and adverse effects of methylprednisolone.
Details
Clinical research shows that grapefruit juice can increase the plasma concentration of orally administered methylprednisolone. Grapefruit juice 200 mL three times daily given with methylprednisolone 16 mg increased methylprednisolone half-life by 35%, peak plasma concentration by 27%, and total area under the curve by 75% (3123).
|
Grapefruit juice might decrease blood levels of nadolol, potentially decreasing the clinical effects of nadolol.
Details
Nadolol is a substrate of organic anion transporting polypeptide 1A2 (OATP1A2) (17603,17604,22161). Some research shows that grapefruit juice and its constituent naringin can inhibit organic anion transporting polypeptides (OATP), which can reduce the bioavailability of OATP substrates (17603,17604,22161,91427). However, preliminary clinical research shows that grapefruit juice containing a low amount of naringin does not significantly affect levels of nadolol (91422). It is not known if grapefruit juice containing higher amounts of naringin reduces the bioavailability of nadolol.
|
Grapefruit juice can increase blood levels of nilotinib, potentially increasing the effects and adverse effects of nilotinib.
Details
Clinical research shows that grapefruit juice inhibits metabolism and increases absorption of nilotinib. Grapefruit juice increases nilotinib levels by 29% and peak concentration by 60% (17677).
|
Grapefruit juice can decrease levels of drugs that are substrates of OATP.
Details
In vitro and clinical research show that consuming grapefruit juice inhibits OATP, which reduces the bioavailability of oral drugs that are substrates of OATP. Various clinical studies have shown reduced absorption of OATP substrates when taken with grapefruit, including fexofenadine, acebutolol, aliskiren, celiprolol, levothyroxine, nadolol, and pitavastatin (17603,17604,18101,22126,22134,22161,22163,91420,91427,91428,112288). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of oxycodone, potentially increasing the effects and adverse effects of oxycodone.
Details
Oxycodone is metabolized by both cytochrome P450 3A4 (CYP3A4) and cytochrome P450 2D6 (CYP2D6). A small clinical study shows that grapefruit juice can increase plasma levels of oral oxycodone about 1.7-fold by inhibiting CYP3A4. While the analgesic effects of oxycodone do not seem to be affected, taking grapefruit juice along with oxycodone may theoretically increase the adverse effects of oxycodone (91423).
|
Grapefruit juice does not seem to affect renal P-glycoprotein (P-gp). Theoretically, it might inhibit intestinal P-gp, but evidence is conflicting.
Details
While most in vitro research shows that grapefruit products inhibit P-gp, (1390,11270,11278,11362,95976), research in humans is less clear. Two small clinical studies in healthy adults using digoxin as a probe substrate show that grapefruit juice does not inhibit P-gp in the kidneys (11277,11282). It is unclear whether this applies to intestinal P-gp, for which digoxin is not considered to be a sensitive probe (105568). Grapefruit juice has been shown to reduce levels of fexofenadine (7046,17602,112288), and increase levels of quinidine (5067,22121). However, as both of these drugs are also substrates of other enzymes and transporters, it is unclear what role, if any, intestinal P-gp has in these findings.
|
Grapefruit juice can increase blood levels of pitavastatin, potentially increasing the effects and adverse effects of pitavastatin.
Details
Pharmacokinetic research shows that taking grapefruit juice with pitavastatin 2-4 mg can increase blood levels of pitavastatin by 13% to 14%. Unlike simvastatin and atorvastatin, pitavastatin is not significantly metabolized by cytochrome P450 3A4 (CYP3A4) enzymes. Grapefruit juice appears to increase levels of pitavastatin by inhibiting its uptake by organic anion transporting polypeptide 1B1 (OATP1B1) into hepatocytes for metabolism and clearance from the body (22126,91420). Grapefruit juice seems to increase levels of pitavastatin to a greater degree in patients homozygous for a specific polymorphism (388A>G) in the OATP1B1 gene compared to those heterozygous for this polymorphism (91420).
|
Grapefruit juice can decrease blood levels of the active metabolite of prasugrel, thereby decreasing the antiplatelet effect of prasugrel.
Details
Prasugrel is a prodrug that is metabolized by cytochrome P450 3A4 (CYP3A4) into its active metabolite. A small pharmacokinetic study in healthy volunteers shows that drinking grapefruit juice 200 mL three times daily for 4 days and taking a single dose of prasugrel 10 mg with an additional 200 mL of grapefruit juice on day 3, results in a 49% lower peak plasma level and a 26% lower overall plasma exposure to the active metabolite when compared with drinking water. However, despite the reduced exposure, platelet aggregation seems to be reduced by an average of only 5% (105567). The clinical significance of this interaction is unclear.
|
Grapefruit juice can increase blood levels of praziquantel, potentially increasing the effects and adverse effects of praziquantel.
Details
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of praziquantel. Plasma concentrations of praziquantel can increase by as much as 160% when administered with 250 mL of commercially available grapefruit juice (8282).
|
Grapefruit juice may increase blood levels of primaquine, potentially increasing the effects and adverse effects of primaquine.
Details
Clinical research shows that grapefruit juice increases the bioavailability of primaquine by approximately 20% (22130). The clinical significance of this interaction is not clear.
|
Grapefruit or grapefruit juice, especially if consumed in large amounts, can cause additive QT interval prolongation when taken with QT interval-prolonging drugs, potentially increasing the risk of ventricular arrhythmias.
Details
Clinical research in healthy volunteers shows that drinking 6 liters of grapefruit juice over 6 hours prolonged the QTc by a peak amount of 14 milliseconds (ms). This prolongation was similar to the QT prolongation caused by the drug moxifloxacin. In individuals with long QT syndrome, a smaller dose of grapefruit juice, 1.5 liters, resulted in a greater peak QTc prolongation of about 30 ms (100249). The effect of smaller quantities of grapefruit juice on the QT interval is unclear.
|
Grapefruit juice may increase blood levels of quetiapine, increasing the effects and adverse effects of quetiapine.
Details
Quetiapine is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4 (3227,3774,8283,8285,8286,22129,91427,104190). In one case report, a healthy 28-year-old female with bipolar disorder stabilized on quetiapine 800 mg daily presented with quetiapine toxicity considered to be related to consuming a gallon of grapefruit juice over the past 24 hours (108848).
|
Grapefruit juice can alter blood levels of quinidine, potentially increasing or decreasing the clinical effects of quinidine.
Details
|
Grapefruit juice can increase blood levels of saquinavir, potentially increasing the effects and adverse effects of saquinavir.
Details
|
Grapefruit juice can increase blood levels of scopolamine, potentially increasing the effects and adverse effects of scopolamine.
Details
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of scopolamine, increasing its absorption and plasma concentrations. Oral bioavailability of scopolamine can increase by 30% when administered with 150 mL of grapefruit juice (8284).
|
Grapefruit juice can increase blood levels of sertraline, potentially increasing the effects and adverse effects of sertraline.
Details
Clinical research shows that grapefruit juice inhibits the cytochrome P450 3A4 (CYP3A4) metabolism of sertraline, increasing blood levels of sertraline (22122).
|
Grapefruit juice can increase blood levels of sildenafil, potentially increasing the effects and adverse effects of sildenafil.
Details
Clinical research shows that grapefruit juice inhibits cytochrome P450 3A4 (CYP3A4) metabolism of sildenafil, increasing its absorption and plasma concentrations. Oral bioavailability of sildenafil can increase by 23% when administered with 500 mL of commercially available grapefruit juice (8283).
|
Grapefruit juice may slightly increase blood levels of sunitinib, potentially increasing the effects and adverse effects of sunitinib.
Details
Sunitinib is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit and grapefruit juice can inhibit CYP3A4 and increase levels of some drugs metabolized by this enzyme. One small clinical study shows that drinking 200 mL of grapefruit juice three times daily can increase the bioavailability of sunitinib by 11% (91429). While this effect is unlikely to be clinically significant, patients should use caution when using grapefruit along with sunitinib. Dose adjustments may be necessary.
|
Grapefruit juice can increase blood levels of tacrolimus, potentially increasing the effects and adverse effects of tacrolimus.
Details
Clinical research shows that drinking grapefruit juice 200 mL daily while taking tacrolimus 3 mg daily increases the trough blood concentration of tacrolimus by approximately 3-fold in patients with connective tissue diseases (95974). A single case has also reported a 10-fold increase in tacrolimus trough levels after the ingestion of grapefruit juice over 3 days (22122). This effect is attributed to the inhibition of cytochrome P450 3A4 (CYP3A4) by grapefruit (95974).
|
Theoretically, grapefruit juice might increase blood levels of tadalafil, potentially increasing the effects and adverse effects of tadalafil.
Details
Animal research shows that grapefruit juice increases tadalafil serum concentrations and overall exposure, likely through inhibition of cytochrome P450 3A4 enzymes (104189).
|
Grapefruit juice might decrease blood levels of talinolol, potentially decreasing the clinical effects of talinolol.
Details
Clinical research suggests that grapefruit juice reduces talinolol bioavailability, likely by inhibiting intestinal uptake (22135). The clinical significance of this effect is unclear.
|
Grapefruit juice can increase blood levels of terfenadine, potentially increasing the effects and adverse effects of terfenadine.
Details
|
Grapefruit juice can decrease blood levels of theophylline, potentially decreasing the effectiveness of theophylline.
Details
Clinical research shows that grapefruit juice seems to modestly decrease theophylline levels when given concurrently with sustained-release theophylline (11013). The mechanism of this interaction is unknown.
|
Grapefruit juice can increase blood levels of ticagrelor, thereby increasing the effects and adverse effects of ticagrelor.
Details
Ticagrelor is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4. A small clinical study shows that taking grapefruit juice with ticagrelor increases blood levels of ticagrelor more than two-fold and increases the antiplatelet activity of ticagrelor (91418).
|
Grapefruit juice can increase blood levels of tolvaptan, potentially increasing the effects and adverse effects of tolvaptan.
Details
Tolvaptan is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4. A small clinical study shows that grapefruit juice can increase the bioavailability and blood levels of tolvaptan by approximately 1.6-fold for up to 16 hours (91426).
|
Theoretically, drinking large amounts of grapefruit juice might increase the effects and adverse effects of warfarin.
Details
In one case report, a patient experienced significantly increased international normalized ratio (INR) associated with consumption of 50 ounces of grapefruit juice daily (12061). However, smaller amounts of grapefruit juice might not be a problem. In a small clinical trial, consumption of 24 ounces of grapefruit juice daily for one week had no effect on INR in males treated with warfarin (12063).
|
Gum arabic can reduce the absorption of amoxicillin.
Details
A small study in healthy volunteers shows that taking amoxicillin and gum arabic concurrently significantly reduces the absorption of amoxicillin. Separate doses of amoxicillin from gum arabic by at least 2 hours (12654).
|
Theoretically, gum arabic can alter the absorption of oral drugs due to its fiber content.
Details
Gum arabic has been used as a suspending osmotic agent in drug formulations. It might improve bioavailability of water-insoluble drugs like naproxen, but reduce absorption of polar drugs like amoxicillin (12654,104058). To avoid changes in absorption, take gum arabic 30-60 minutes after oral medications.
|
Theoretically, pau d'arco might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Details
In vitro research shows that pau d'arco reduces platelet aggregation and may interfere with vitamin K (18057,68319). One clinical study shows that taking the lapachol constituent of pau d'arco in doses above 1.5 grams daily increases the risk of bleeding (91939). The effects of whole pau d'arco or pau d'arco extract in humans are unclear.
|
Theoretically, taking periwinkle may increase the effects of antihypertensive drugs due to the hypotensive activity of vincamine, a constituent of periwinkle (12,19).
|
Theoretically, spearmint might alter the sedative effects of CNS depressants.
Details
|
Theoretically, high doses of spearmint might increase the risk of liver damage when taken with hepatotoxic drugs.
Details
Animal research suggests that drinking spearmint tea for 30 days can increase markers of liver damage, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and cause liver degeneration and necrosis, in a dose-dependent manner (12731). This effect has not been reported in humans.
|
Using wintergreen oil topically in large amounts, with occlusive dressings, or for prolonged periods of time might increase the risk of additive salicylate toxicity when used with aspirin.
Details
|
Using wintergreen oil topically might increase the effects and adverse effects of warfarin.
Details
Several case reports show that concomitant use of topical wintergreen oil-containing products and warfarin can increase INR and bleeding risk due to systemic absorption of the methyl salicylate contained in wintergreen oil (3811,6181). Topical analgesic gels, lotions, creams, ointments, liniments, and sprays can contain up to 55% methyl salicylate (6181).
|
Below is general information about the adverse effects of the known ingredients contained in the product 4 FungDX. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, grapefruit and grapefruit juice are generally well tolerated.
Serious Adverse Effects (Rare):
Orally: Allergic reactions in sensitive individuals have been reported. When large quantities are consumed, arrhythmias, mineralocorticoid excess, QT prolongation, and pseudohyperaldosteronism have been reported. There is also some concern for increased breast cancer risk with grapefruit consumption.
Cardiovascular ...Orally, consumption of pink grapefruit juice 1000 mL can cause QT prolongation and cause arrhythmias in healthy patients and worsen arrhythmias in cardiomyopathy patients (13031,91424).
Endocrine ...Orally, high doses of grapefruit juice have been observed to cause pseudohyperaldosteronism and mineralocorticoid excess (53340,53346).
Gastrointestinal ...In a case report, grapefruit juice held against the teeth resulted in enamel and tooth surface loss (53368).
Immunologic ...Orally, grapefruit can cause allergic sensitization characterized by eosinophilic gastroenteritis, urticaria, and generalized pruritus (53351,53360).
Oncologic ...Preliminary population research shows that postmenopausal adults who consume a quarter or more of a whole grapefruit daily have a 25% to 30% increased risk of developing breast cancer (14858). Grapefruit is a potent inhibitor of cytochrome P450 3A4, which metabolizes estrogen. Consuming large amounts of grapefruit might significantly increase endogenous estrogen levels and therefore increase the risk of breast cancer. More evidence is needed to validate these findings. Until more is known, advise patients to consume grapefruit in moderation.
Renal ...In population research, consumption of 240 mL/day of grapefruit juice is associated with an increased risk of kidney stones (4216,53372).
General
...Orally, gum arabic seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal bloating, flatulence, mild diarrhea, nausea, and vomiting.
Gastrointestinal ...Orally, gum arabic can cause minor gastrointestinal disturbances such as abdominal bloating, flatulence, nausea, vomiting, cramping, and mild diarrhea (8072,18237,99098,105038,105040,108051). These effects occurred in 15%, 82%, and 90% of subjects respectively in one study (18237). They may subside with continued use within 2 weeks (8072,18237,99098,105038).
Immunologic ...Gum arabic might cause allergic reactions. In one case report, a patient had an immunoglobulin E response after exposure to gum arabic. However, there have been no identified case reports of allergic reactions after oral exposure to gum arabic (19636,105040).
General ...A thorough evaluation of safety outcomes with pau d'arco has not been conducted. However, taking the lapachol constituent of pau d'arco in doses above 1.5 grams daily is regarded as unsafe.
Gastrointestinal ...Orally, the lapachol constituent of pau d'arco, taken in doses above 1. 5 grams daily, may cause severe nausea, vomiting, and diarrhea (91939).
Hematologic ...Orally, the lapachol constituent of pau d'arco, taken in doses above 1. 5 grams daily, may cause anemia and increased risk of bleeding (91939).
Immunologic ...Occupational exposure to sawdust from the pau d'arco tree and related species may cause asthma and dermatitis. The fresh sawdust can produce erythema and papules which progress to a severe weeping and crusting dermatitis (92184).
Neurologic/CNS ...Orally, the lapachol constituent of pau d'arco, taken in doses above 1. 5 grams daily, may cause dizziness (91939).
General ...Periwinkle is generally regarded as unsafe for use. Orally, periwinkle can cause cytotoxic, neurologic, liver, and kidney damage due to its vinca alkaloid constituents (17). Periwinkle has also been reported to cause gastrointestinal complaints, skin flushing, and hypotension (18).
Cardiovascular ...Orally, large amounts of periwinkle can cause a severe drop in blood pressure (18).
Dermatologic ...Orally, periwinkle can cause skin flushing (18).
Gastrointestinal ...Orally, periwinkle can cause gastrointestinal complaints (18).
Hepatic ...Orally, periwinkle can cause liver damage due to its vinca alkaloid constituents (17).
Neurologic/CNS ...Orally, periwinkle can cause neurologic damage due to its vinca alkaloid constituents (17).
Renal ...Orally, periwinkle can cause kidney damage due to its vinca alkaloid constituents (17).
General
...Orally, spearmint is well tolerated.
Most Common Adverse Effects:
Topically: Allergic contact dermatitis or cheilitis in sensitive individuals.
Cardiovascular ...Orally, taking spearmint extract 600 mg daily has been associated with one report of tachycardia in one clinical trial. However, it is not certain that this adverse event was caused by spearmint extract (94925).
Dermatologic ...Orally, drinking 2 cups of spearmint tea with normal amounts of rosmarinic acid has been associated with one report of itchy skin in clinical research (94923).
Gastrointestinal ...Orally, taking spearmint extract 600 mg daily has been associated with dyspepsia in one clinical trial (94925). Taking a higher dose of 900 mg daily has been associated with diarrhea and belching (94925). Drinking 2 cups of spearmint tea with normal amounts of rosmarinic acid has been associated with one report of dry mouth in clinical research. Drinking 2 cups of spearmint tea containing high amounts of rosmarinic acid has been associated with three reports of constipation and one report of loose bowel movements (94923). Taking 1 mL of spearmint oil equivalent to 500 mg of spearmint has been associated with reports of regurgitation in clinical research (75700).
Immunologic ...Topically, spearmint oil and leaves have caused allergic dermatitis (75711,75731,75737). Allergic contact cheilitis has also occurred from spearmint oil in toothpaste or chewing gum (31403,31528,75706,75739,75777,75790). Spearmint oil inhalation has also caused allergic dermatitis (56955). Orally, spearmint leaves have caused allergy-associated swelling of the soft palate. A specific 50 KDa protein in the spearmint was found to be the responsible allergen (94922). In some cases, spearmint allergy was associated with oral lichen planus of the tongue, lips, palate, buccal mucosa, and gingivae. Observational studies suggest that exposure to spearmint is associated with exacerbation of oral lichen planus as confirmed by patch testing (94924,112844).
Neurologic/CNS ...Orally, drinking 2 cups of spearmint tea containing high amounts of rosmarinic acid has been associated with two reports of headache in clinical research (94923).
Psychiatric ...Orally, taking spearmint extract 600 mg daily has been associated with one report of anxiety in one clinical trial. However, it is not certain that this adverse event was caused by spearmint extract (94925).
Other ...Orally, taking spearmint extract 600 mg daily has been associated with one report of increased appetite and weight gain in one clinical trial. However, it is not certain that these adverse events were caused by spearmint extract (94925).
General
...Orally, wintergreen leaf seems to be well tolerated, while wintergreen oil may be unsafe.
Topically, wintergreen oil seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Salicylate poisoning due to methyl salicylate in wintergreen oil.
Dermatologic ...Wintergreen oil can cause contact dermatitis, which can be irritant or allergic in nature (18,3811,112157). When the oil is applied topically it should not be covered with an occlusive dressing because this could result in absorption of toxic amounts of methyl salicylate (272).
Gastrointestinal ...Orally, wintergreen oil can result in symptoms of salicylate poisoning, including nausea, vomiting, diarrhea, and stomach pain (272). Wintergreen causes gastrointestinal irritation (19).
Neurologic/CNS ...Orally, wintergreen oil can result in symptoms of salicylate poisoning, including headache, tinnitus, and confusion (272).