Each 450 mg capsule contains: Hordeum vulgare 45 mg • Poria cocos 45 mg • Polygalae Tenuifolia radix 35 mg • Radix Codonopsis Pilosulae 40 mg • Herba Mentha Haplocalycis 30 mg • Radix Angelicae Sinensis 40 mg • Atractylodes Macrocephala rhizoma 45 mg • Pericarpium Citri Reticulatae 40 mg • Radix Bupleurum Chinense 45 mg • Radix Paeoniae Lactiflorae 45 mg • Glycyrrhiza uralensis radix 40 mg.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Basic Balance 2. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Basic Balance 2. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
There is insufficient reliable information available about the safety of atractylodes.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
In animals, atractylodes has caused reproductive toxicity, including fetal death, as well as changes in gestation, growth, and skeletal formation (94304).
LACTATION:
There is insufficient reliable information available about the safety of atractylodes when used during breast-feeding.
LIKELY SAFE ...when used orally and appropriately in food amounts (4819,4820,4821,5104,10166,10435,11134,11463,11986,92818). There is insufficient reliable information available about the safety of barley when used orally in medicinal amounts or when applied topically.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (19).
PREGNANCY: POSSIBLY UNSAFE
when barley sprouts are consumed in relatively high doses.
Excessive amounts of barley sprouts should not be consumed during pregnancy (19).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Bupleurum has been used with apparent safety as part of a multi-ingredient decoction (sho-saiko-to) for up to 5 years (37391,37410). It has also been used with apparent safety as part of another multi-ingredient decoction (chima qingwen) at doses of up to 40 grams bupleurum daily for up to 5 days (100167).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Dong quai has been used with apparent safety in a dose of 4.5 grams daily for 24 weeks, or in combination with other ingredients in doses of up to 150 mg daily for up to 6 months (19552,35797). ...when used intravenously as a 25% solution, in a dose of 200-250 mL daily for up to 20 days (48438,48442,48443,48483).
POSSIBLY UNSAFE ...when used orally in large amounts, long-term. Theoretically, long-term use of large amounts of dong quai could be harmful. Dong quai contains several constituents such as bergapten, safrole, and isosafrole that are considered carcinogenic (7162). There is insufficient reliable information available about the safety of dong quai when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Dong quai has uterine stimulant and relaxant effects (8142); theoretically, it could adversely affect pregnancy. Observational research has found that intake of An-Tai-Yin, an herbal combination product containing dong quai and parsley, during the first trimester is associated with an increased risk of congenital malformations of the musculoskeletal system, connective tissue, and eyes (15129).
LACTATION:
Insufficient reliable information available; avoid use.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Licorice has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes. Licorice flavonoid oil 300 mg daily for 16 weeks, and deglycyrrhizinated licorice products in doses of up to 4.5 grams daily for up to 16 weeks, have been used with apparent safety (6196,11312,11313,17727,100984,102960). ...when licorice products containing glycyrrhizin are used orally in low doses, short-term. Licorice extract 272 mg, containing glycyrrhizin 24.3 mg, has been used daily with apparent safety for 6 months (102961). A licorice extract 1000 mg, containing monoammonium glycyrrhizinate 240 mg, has been used daily with apparent safety for 12 weeks (110320). In addition, a syrup providing licorice extract 750 mg has been used twice daily with apparent safety for 5 days (104558). ...when applied topically. A gel containing 2% licorice root extract has been applied to the skin with apparent safety for up to 2 weeks. (59732). A mouth rinse containing 5% licorice extract has been used with apparent safety four times daily for up to one week (104564).
POSSIBLY UNSAFE ...when licorice products containing glycyrrhizin are used orally in large amounts for several weeks, or in smaller amounts for longer periods of time. The European Scientific Committee on Food recommends that a safe average daily intake of glycyrrhizin should not exceed 10 mg (108577). In otherwise healthy people, consuming glycyrrhizin daily for several weeks or longer can cause severe adverse effects including pseudohyperaldosteronism, hypertensive crisis, hypokalemia, cardiac arrhythmias, and cardiac arrest. Doses of 20 grams or more of licorice products, containing at least 400 mg glycyrrhizin, are more likely to cause these effects; however, smaller amounts have also caused hypokalemia and associated symptoms when taken for months to years (781,3252,15590,15592,15594,15596,15597,15599,15600,16058)(59731,59740,59752,59785,59786,59787,59792,59795,59805,59811)(59816,59818,59820,59822,59826,59828,59849,59850,59851,59867)(59882,59885,59888,59889,59895,59900,59906,97213,110305). In patients with hypertension, cardiovascular or kidney conditions, or a high salt intake, as little as 5 grams of licorice product or 100 mg glycyrrhizin daily can cause severe adverse effects (15589,15593,15598,15600,59726).
PREGNANCY: UNSAFE
when used orally.
Licorice has abortifacient, estrogenic, and steroid effects. It can also cause uterine stimulation. Heavy consumption of licorice, equivalent to 500 mg of glycyrrhizin per week (about 250 grams of licorice per week), during pregnancy seems to increase the risk of delivery before gestational age of 38 weeks (7619,10618). Furthermore, high intake of glycyrrhizin, at least 500 mg per week, during pregnancy is associated with increased salivary cortisol levels in the child by the age of 8 years. This suggests that high intake of licorice during pregnancy may increase hypothalamic-pituitary-adrenocortical axis activity in the child (26434); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
There is insufficient reliable information available about the safety of poria mushroom.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Basic Balance 2. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, atractylodes might increase the risk of bleeding when used concomitantly with anticoagulant and antiplatelet drugs.
Details
Laboratory research suggests that atractylenolides II and III, constituents of atractylodes, reduce platelet activation (94299). So far, this has not been shown in humans.
|
Theoretically, atractylodes may have an additive effect when used with other aromatase inhibitors.
Details
Laboratory research suggests that atractylodes and its constituents exhibit aromatase inhibitor effects (94302).
|
Theoretically, atractylodes might decrease the levels of CYP1A2 substrates.
Details
In animals, atractylodes administered at high doses has been shown to induce CYP1A2 activity (112828). This effect has not been shown in humans.
|
Theoretically, atractylodes might increase the levels of CYP3A4 substrates.
Details
In animals, atractylodes administered at high doses has been shown to inhibit CYP3A1 activity, which is a homolog to the human CYP3A4 enzyme (112828). This effect has not been shown in humans.
|
Theoretically, taking atractylodes may prolong the therapeutic and adverse effects of hexobarbital.
Details
In animals, atractylodes has been shown to prolong the effects of hexobarbital (94303). These effects have not been shown in humans.
|
Theoretically, barley might decrease the clinical effects of triclabendazole.
Details
Animal research suggests that a diet supplemented with barley can reduce the bioavailability of triclabendazole when taken concomitantly (23884). This effect has not been shown in humans.
|
Theoretically, bupleurum might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, bupleurum might decrease the effects of antidiabetes drugs.
Details
|
Theoretically, bupleurum might decrease the effects of immunosuppressants.
Details
|
Theoretically, dong quai may increase the risk of bleeding when used with anticoagulant or antiplatelet drugs; however, research is conflicting.
Details
Animal studies suggest that dong quai has antithrombin activity and inhibits platelet aggregation due to its coumarin components (6048,10057,96137). Additionally, some case reports in humans suggest that dong quai can increase the anticoagulant effects of warfarin (3526,6048,23310,48439). However, clinical research in healthy adults shows that taking 1 gram of dong quai root daily for 3 weeks does not significantly inhibit platelet aggregation or cause bleeding (96137). Until more is known, use dong quai with caution in patients taking antiplatelet/anticoagulant drugs.
|
Theoretically, dong quai may reduce the effects of estrogens.
Details
|
Dong quai may increase the risk of bleeding when used with warfarin.
Details
Case reports suggest that concomitant use of dong quai with warfarin can increase the anticoagulant effects of warfarin and increase the risk of bleeding (3526,6048,23310,48439). In one case, after 4 weeks of taking dong quai 565 mg once or twice daily, the international normalized ratio (INR) increased to 4.9. The INR normalized 4 weeks after discontinuation of dong quai (3526).
|
Theoretically, licorice might reduce the effects of antihypertensive drugs.
Details
|
Theoretically, licorice might reduce the effects of cisplatin.
Details
In animal research, licorice diminished the therapeutic efficacy of cisplatin (59763).
|
Theoretically, concomitant use of licorice and corticosteroids might increase the side effects of corticosteroids.
Details
Case reports suggest that concomitant use of licorice and oral corticosteroids, such as hydrocortisone, can potentiate the duration of activity and increase blood levels of corticosteroids (3252,12672,20040,20042,48429,59756). Additionally, in one case report, a patient with neurogenic orthostatic hypertension stabilized on fludrocortisone 0.1 mg twice daily developed pseudohyperaldosteronism after recent consumption of large amounts of black licorice (108568).
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2B6.
Details
In vitro research shows that licorice extract and glabridin, a licorice constituent, inhibit CYP2B6 isoenzymes (10300,94822). Licorice extract from the species G. uralensis seems to inhibit CYP2B6 isoenzymes to a greater degree than G. glabra extract in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2B6; however, these interactions have not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C19.
Details
In vitro, licorice extracts from the species G. glabra and G. uralensis inhibit CYP2C19 isoenzymes in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C19; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C8.
Details
In vitro, licorice extract from the species G. glabra and G. uralensis inhibits CYP2C8 isoenzymes (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C8; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP2C9.
Details
There is conflicting evidence about the effect of licorice on CYP2C9 enzyme activity. In vitro research shows that extracts from the licorice species G. glabra and G. uralensis moderately inhibit CYP2C9 isoenzymes (10300,94822). However, evidence from an animal model shows that licorice extract from the species G. uralensis can induce hepatic CYP2C9 activity (14441). Until more is known, licorice should be used cautiously in people taking CYP2C9 substrates.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP3A4.
Details
Pharmacokinetic research shows that the licorice constituent glycyrrhizin, taken in a dosage of 150 mg orally twice daily for 14 days, modestly decreases the area under the concentration-time curve of midazolam by about 20%. Midazolam is a substrate of CYP3A4, suggesting that glycyrrhizin modestly induces CYP3A4 activity (59808). Animal research also shows that licorice extract from the species G. uralensis induces CYP3A4 activity (14441). However, licorice extract from G. glabra species appear to inhibit CYP3A4-induced metabolism of testosterone in vitro. It is thought that the G. glabra inhibits CYP3A4 due to its constituent glabridin, which is a moderate CYP3A4 inhibitor in vitro and not present in other licorice species (10300,94822). Until more is known, licorice should be used cautiously in people taking CYP3A4 substrates.
|
Theoretically, concomitant use of licorice with digoxin might increase the risk of cardiac toxicity.
Details
Overuse or misuse of licorice with cardiac glycoside therapy might increase the risk of cardiac toxicity due to potassium loss (10393).
|
Theoretically, concomitant use of licorice with diuretic drugs might increase the risk of hypokalemia.
Details
Overuse of licorice might compound diuretic-induced potassium loss (10393,20045,20046,59812). In one case report, a 72-year-old male with a past medical history of hypertension, type 2 diabetes, hyperlipidemia, arrhythmia, stroke, and hepatic dysfunction was hospitalized with severe hypokalemia and uncontrolled hypertension due to pseudohyperaldosteronism. This was thought to be provoked by concomitant daily consumption of a product containing 225 mg of glycyrrhizin, a constituent of licorice, and hydrochlorothiazide 12.5 mg for 1 month (108577).
|
Theoretically, licorice might increase or decrease the effects of estrogen therapy.
Details
|
Theoretically, loop diuretics might increase the mineralocorticoid effects of licorice.
Details
Theoretically, loop diuretics might enhance the mineralocorticoid effects of licorice by inhibiting the enzyme that converts cortisol to cortisone; however, bumetanide (Bumex) does not appear to have this effect (3255).
|
Theoretically, licorice might increase levels of methotrexate.
Details
Animal research suggests that intravenous administration of glycyrrhizin, a licorice constituent, and high-dose methotrexate may delay methotrexate excretion and increase systemic exposure, leading to transient elevations in liver enzymes and total bilirubin (108570). This interaction has not yet been reported in humans.
|
Theoretically, licorice might decrease levels of midazolam.
Details
In humans, the licorice constituent glycyrrhizin appears to moderately induce the metabolism of midazolam (59808). This is likely due to induction of cytochrome P450 3A4 by licorice. Until more is known, licorice should be used cautiously in people taking midazolam.
|
Theoretically, licorice might decrease the absorption of P-glycoprotein substrates.
Details
In vitro research shows that licorice can increase P-glycoprotein activity (104561).
|
Theoretically, licorice might decrease plasma levels and clinical effects of paclitaxel.
Details
Multiple doses of licorice taken concomitantly with paclitaxel might reduce the effectiveness of paclitaxel. Animal research shows that licorice 3 grams/kg given orally for 14 days before intravenous administration of paclitaxel decreases the exposure to paclitaxel and increases its clearance. Theoretically, this occurs because licorice induces cytochrome P450 3A4 enzymes, which metabolize paclitaxel. Notably, a single dose of licorice did not affect exposure or clearance of paclitaxel (102959).
|
Theoretically, licorice might decrease plasma levels and clinical effects of warfarin.
Details
Licorice seems to increase metabolism and decrease levels of warfarin in animal models. This is likely due to induction of cytochrome P450 2C9 (CYP2C9) metabolism by licorice (14441). Advise patients taking warfarin to avoid taking licorice.
|
Theoretically, poria mushroom might decrease the clinical effects of anticholinergic drugs.
Details
In animal research, poria mushroom essential oil reduces acetylcholinesterase activity (111917). This interaction has not been shown in humans.
|
Theoretically, poria mushroom might have additive effects when used with cholinergic drugs.
Details
In animal research, poria mushroom essential oil reduces acetylcholinesterase activity (111917). This interaction has not been shown in humans.
|
Theoretically, taking poria mushroom extract may enhance the therapeutic and adverse effects of sedatives.
Details
Animal research shows that poria mushroom extract has sedative properties (111916). This interaction has not been shown in humans.
|
Below is general information about the adverse effects of the known ingredients contained in the product Basic Balance 2. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...There is currently a limited amount of information on the adverse effects of atractylodes.
A thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Allergic reaction, dry mouth, nausea.
Gastrointestinal ...Orally, atractylenolide I, an isolated constituent of atractylodes, can cause bad taste, nausea, and dry mouth (15706).
Immunologic ...Atractylodes can cause an allergic reaction in people sensitive to the Asteraceae/Compositae family (12450). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
General
...Orally, barley is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal distension, bloating, flatulence, unpleasant taste. Allergic reactions in sensitive individuals.
Topically: Allergic reactions in sensitive individuals.
Dermatologic ...Topically, barley malt contained in beer has been reported to cause contact dermatitis (33762). After occupational exposure, barley has been reported to cause contact dermatitis of the eyelids and extremities, as well as contact urticaria (33735,33770,33774).
Gastrointestinal
...When consumed orally, barley provides fiber.
Increasing fiber in the diet can cause flatulence, bloating, abdominal distention, and unpleasant taste. To minimize side effects, doses should be slowly titrated to the desired level. Adverse effects usually subside with continued use (12514).
Barley contains gluten. In patients with biopsy-proven celiac disease, consuming barley can cause gastrointestinal upset and impairment of xylose excretion (33763,33772).
Immunologic
...Orally, consumption of beer has been reported to cause allergic reactions in sensitive individuals (33722,33724).
Symptoms included tingling in the face, lip, and tongue, angioedema, generalized urticaria, chest tightness, dyspnea, cough, fainting, and rhinoconjunctivitis. It can also cause anaphylaxis in sensitive individuals (317). Topically and with occupational exposure, barley has been reported to cause contact dermatitis and rash (33762,33735,33770,33774).
"Bakers' asthma" is an allergic response resulting from the inhalation of cereal flours by workers in the baking and milling industries, and has been reported to occur after barley flour exposure (1300,33756,33760). Cross-allergenicity has been shown to exist between different cereals (33758).
Pulmonary/Respiratory
..."Bakers' asthma" is an allergic response resulting from the inhalation of cereal flours by workers in the baking and milling industries, and has been reported to occur after barley flour exposure (1300,33756,33760).
Cross-allergenicity has been shown to exist between different cereals (33758).
By inhalation, barley flours may be a source of allergens in asthma (33764,33773). Inhalation of wild barley grass pollen may result in bronchial irritation or pneumonitis (33726,33755).
General ...Orally, bupleurum seems to be well tolerated. However, most research has evaluated bupleurum in combination with other ingredients; the adverse effects of bupleurum when used alone are unclear.
Gastrointestinal ...Orally, a specific bupleurum-containing combination product (sho-saiko-to) has been reported to cause nausea, anorexia, and abdominal fullness (37391). It is unclear if these adverse effects are due to bupleurum, other ingredients, or the combination.
Hepatic ...Orally, a specific bupleurum-containing combination product (sho-saiko-to) has been associated with at least 24 reported cases of hepatotoxicity (92575). It is unclear if these adverse effects are due to bupleurum, other ingredients, or the combination.
Neurologic/CNS ...Orally, a specific bupleurum-containing combination product (sho-saiko-to) has been reported to cause fatigue and paresthesia (37391). It is unclear if these adverse effects are due to bupleurum, other ingredients, or the combination.
Pulmonary/Respiratory ...Orally, combination products containing bupleurum have been reported to cause eosinophilic pneumonia (354), pulmonary edema (361), and multiple cases of pneumonitis (355,356,357,37404). A specific combination product (sho-saiko-to), used in combination with interferon-alpha in patients with chronic active hepatitis, has also been associated with multiple cases of pneumonitis (358,359,360). It is unclear if these adverse effects are due to bupleurum, other ingredients, or the combination.
General
...Orally, dong quai is generally well-tolerated.
Most Common Adverse Effects:
Orally: Burping and flatulence.
Intravenously: Headache.
Cardiovascular ...Orally, dong quai might cause hypertension; according to one case report, a parent and breastfed infant experienced hypertension (195/85 mmHg and 115/69 mmHg, respectively) after the parent consumed a soup containing dong quai root (48428).
Dermatologic ...Dong quai contains psoralens that may cause photosensitivity and photodermatitis (10054,10057,48461).
Endocrine ...In a case report, a male developed gynecomastia after ingesting dong quai tablets (48504).
Gastrointestinal ...Orally, burping and gas may occur with dong quai (738).
Hematologic ...In one case report, a 55-year-old female with protein S deficiency and systemic lupus erythematosus (SLE) had temporary vision loss in the left eye from hemiretinal vein thrombosis three days after taking a phytoestrogen preparation containing dong quai 100 mg, black cohosh 250 mg, wild Mexican yam 276 mg, and red clover 250 mg (13155). It is unclear if dong quai contributed to this event.
Neurologic/CNS ...Dong quai given orally or by injection may be associated with headache (738,48438).
Oncologic ...Dong quai contains constituents that are carcinogenic; however, whether these constituents are present in concentrations large enough to cause cancer with long-term or high-dose use is unknown (7162).
Pulmonary/Respiratory ...A pharmacist experienced allergic asthma and rhinitis after occupational exposure to dong quai and other herbs (48435).
General
...Orally, licorice is generally well tolerated when used in amounts commonly found in foods.
It seems to be well tolerated when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes or when used topically, short-term.
Most Common Adverse Effects:
Orally: Headache, nausea, and vomiting.
Topically: Contact dermatitis.
Intravenously: Diarrhea, itching, nausea, and rash.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about acute renal failure, cardiac arrest, cardiac arrhythmias, hypertension, hypokalemia, muscle weakness, paralysis, pseudohyperaldosteronism, and seizure associated with long-term use or large amounts of licorice containing glycyrrhizin.
Cardiovascular
...Orally, excessive licorice ingestion can lead to pseudohyperaldosteronism, which can precipitate cardiovascular complications such as hypertension and hypertensive crisis, ventricular fibrillation or tachycardia, sinus pause, and cardiac arrest.
These effects are due to the licorice constituent glycyrrhizin and usually occur when 20-30 grams or more of licorice product is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,97213) (104563,108574,108576,110305,112234). In one case report, an 89-year-old female taking an herbal medicine containing licorice experienced a fatal arrhythmia secondary to licorice-induced hypokalemia. The patient presented to the hospital with recurrent syncope, weakness, and fatigue for 5 days after taking an herbal medicine containing licorice for 2 months. Upon admission to the hospital, the patient developed seizures, QT prolongation, and ventricular arrhythmia requiring multiple defibrillations. Laboratory tests confirmed hypokalemia and pseudohyperaldosteronism (112234).
However, people with cardiovascular or kidney conditions may be more sensitive, so these adverse events may occur with doses as low as 5 grams of licorice product or glycyrrhizin 100 mg daily (15589,15593,15598,15600,59726). A case report in a 54-year-old male suggests that malnutrition might increase the risk of severe adverse effects with excessive licorice consumption. This patient presented to the emergency room with cardiac arrest and ventricular fibrillation after excessive daily consumption of licorice for about 3 weeks. This caused pseudohyperaldosteronism and then hypokalemia, leading to cardiovascular manifestations. In spite of resuscitative treatment, the patient progressed to kidney failure, refused dialysis, and died shortly thereafter (103791).
Dermatologic
...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912).
There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578). Burning sensation, itching, redness, and scaling were reported rarely in patients applying a combination of licorice, calendula, and snail secretion filtrate to the face. The specific role of licorice is unclear (110322).
In rare cases, the glycyrrhizin constituent of licorice has caused rash and itching when administered intravenously (59712).
Endocrine
...Orally, excessive licorice ingestion can cause a syndrome of apparent mineralocorticoid excess, or pseudohyperaldosteronism, with sodium and water retention, increased urinary potassium loss, hypokalemia, and metabolic alkalosis due to its glycyrrhizin content (781,10619,15591,15592,15593,15594,15595,15596,15597,15598)(15600,16057,16835,25659,25660,25673,25719,26439,59818,59822)(59832,59864,91722,104563,108568,108574,110305,112234).
These metabolic abnormalities can lead to hypertension, edema, EKG changes, fatigue, syncope, arrhythmias, cardiac arrest, headache, lethargy, muscle weakness, dropped head syndrome (DHS), rhabdomyolysis, myoglobinuria, paralysis, encephalopathy, respiratory impairment, hyperparathyroidism, and acute kidney failure (10393,10619,15589,15590,15593,15594,15596,15597,15599)(15600,16057,16835,25660,25673,25719,26439,31562,59709,59716)(59720,59740,59787,59820,59826,59882,59889,59900,91722,97214,100522) (104563,108576,108577). These effects are most likely to occur when 20-30 grams of licorice products containing glycyrrhizin 400 mg or more is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,108574). However, some people may be more sensitive, especially those with hypertension, diabetes, heart problems, or kidney problems (15589,15593,15598,15600,59726,108576,108577) and even low or moderate consumption of licorice may cause hypertensive crisis or hypertension in normotensive individuals (1372,97213). The use of certain medications with licorice may also increase the risk of these adverse effects (108568,108577). One case report determined that the use of large doses of licorice in an elderly female stabilized on fludrocortisone precipitated hypokalemia and hypertension, requiring inpatient treatment (108568). Another case report describes severe hypokalemia necessitating intensive care treatment due to co-ingestion of an oral glycyrrhizin-specific product and hydrochlorothiazide for 1 month (108577). Glycyrrhetinic acid has a long half-life, a large volume of distribution, and extensive enterohepatic recirculation. Therefore, it may take 1-2 weeks before hypokalemia resolves (781,15595,15596,15597,15600). Normalization of the renin-aldosterone axis and blood pressure can take up to several months (781,15595,108568). Treatment typically includes the discontinuation of licorice, oral and intravenous potassium supplementation, and short-term use of aldosterone antagonists, such as spironolactone (108574,108577).
Chewing tobacco flavored with licorice has also been associated with toxicity. Chewing licorice-flavored tobacco, drinking licorice tea, or ingesting large amounts of black licorice flavored jelly beans or lozenges has been associated with hypertension and suppressed renin and aldosterone levels (12671,12837,97214,97215,97217,108574). One case report suggests that taking a combination product containing about 100 mg of licorice and other ingredients (Jintan, Morishita Jintan Co.) for many decades may be associated with hypoaldosteronism, even up to 5 months after discontinuation of the product (100522). In another case report, licorice ingestion led to hyperprolactinemia in a female (59901). Licorice-associated hypercalcemia has also been noted in a case report (59766).
Gastrointestinal ...Nausea and vomiting have been reported rarely following oral use of deglycyrrhizinated licorice (25694,59871). Intravenously, the glycyrrhizin constituent of licorice has rarely caused gastric discomfort, diarrhea, or nausea (59712,59915).
Immunologic ...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912). There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578).
Musculoskeletal ...In a case report, excessive glycyrrhizin-containing licorice consumption led to water retention and was thought to trigger neuropathy and carpal tunnel syndrome (59791).
Neurologic/CNS ...Orally, licorice containing larger amounts of glycyrrhizin may cause headaches. A healthy woman taking glycyrrhizin 380 mg daily for 2 weeks experienced a headache (59892). Intravenously, the glycyrrhizin constituent of licorice has rarely caused headaches or fatigue (59721). In a case report, licorice candy ingestion was associated with posterior reversible encephalopathy syndrome accompanied by a tonic-clonic seizure (97218).
Ocular/Otic ...Orally, consuming glycyrrhizin-containing licorice 114-909 grams has been associated with transient visual loss (59714).
Pulmonary/Respiratory ...Orally, large amounts of licorice might lead to pulmonary edema. In one case report, a 64-year old male consumed 1020 grams of black licorice (Hershey Twizzlers) containing glycyrrhizin 3.6 grams over 3 days, which resulted in pulmonary edema secondary to pseudohyperaldosteronism (31561). Intravenously, the glycyrrhizin constituent of licorice has caused cold or flu-like symptoms, although these events are not common (59712,59721).
General ...Orally, poria mushroom seems to be well tolerated. However, a thorough evaluation of safety outcomes has not been conducted.
Immunologic ...Allergic reactions have been reported rarely, including allergic rhinitis and allergic asthma (12).