Each capsule contains: Radix Polygonum Multiflorum 70 mg • Fructus Lycium barbarum 70 mg • Radix Rehmanniae Preparata 70 mg • Fructus Morus Alba 56 mg • Fructus Ligustrum lucidum 56 mg • Eclipta Prostata Herb 70 mg • Cortex Paeonia Suffructicosa 56 mg • Poria cocos 52 mg.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Shou Wu Plus 500 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of glossy privet.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Shou Wu Plus 500 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY UNSAFE ...when used orally. Fo-ti has been linked to several cases of liver damage (7626,7627,14327,14347,14482,16459,17192,50711,50727,50729) (92892,92895,112231).
CHILDREN: POSSIBLY UNSAFE
when used orally.
Fo-ti has been linked to several cases of liver damage in adults and at least one case in a 5-year-old child (14339,92895).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Fo-ti contains anthraquinone constituents, which can exert a stimulant laxative effect. Bulk-forming or emollient laxatives are preferred in pregnancy (272). Fo-ti has also been linked to several cases of liver damage (7626,7627,14327). There is insufficient reliable information available about the safety of fo-ti when used topically during pregnancy.
LACTATION: POSSIBLY UNSAFE
when used orally.
Anthraquinone constituents can cross into breast milk and might cause loose stools in some breast-fed infants (272). Fo-ti has also been linked to several cases of liver damage (7626,7627,14327). There is insufficient reliable information available about the safety of fo-ti when used topically during lactation.
POSSIBLY SAFE ...when used orally and appropriately (12).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when goji fruit preparations are used orally and appropriately, short-term. Goji berry whole fruit, boiled or steamed, has been used with apparent safety at a dose of 15 grams daily for 16 weeks (105489). Other goji berry products have also been used with apparent safety in clinical research, including a specific goji fruit juice (GoChi, FreeLife International) 120 mL daily for 30 days (52532), a goji fruit polysaccharide 300 mg daily for 3 months (92117), and a specific milk-based formulation of goji berry (Lacto-Wolfberry, Nestlé Research Center) for 3 months (52539). There has been some concern about the atropine content of goji; however, most analyses show that levels of atropine in goji berries from China and Thailand are far below potentially toxic levels (52524,94667). There is insufficient reliable information available about the safety of oral use of other parts of the goji plant.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
Some animal research shows that goji fruit may stimulate the uterus (12). However, this has not been reported in humans. Until more is known, avoid using during pregnancy or lactation.
There is insufficient reliable information available about the safety of poria mushroom.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. White mulberry powdered leaf or leaf extract has been used with apparent safety at doses of up to 4.6 grams three times daily for up to 12 weeks (16494,17051,100627,103870,105796,110480). There is insufficient reliable information available about the safety of white mulberry berries.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Shou Wu Plus 500 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, fo-ti might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, taking large amounts of fo-ti might interfere with contraceptive drugs due to competition for estrogen receptors.
Details
|
Theoretically, fo-ti might increase or decrease the levels and clinical effects of drugs metabolized by CYP1A2.
Details
In vitro research suggests that fo-ti might inhibit CYP1A2 (12479,112351). Additionally, in vitro research suggests that the degree of CYP1A2 inhibition depends on the type of fo-ti extract (i.e., the raw plant leads to greater inhibition than extensively processed extracts) (112351). However, in an animal study, an aqueous extract of fo-ti inhibited CYP1A2 while an alcoholic extract of fo-ti induced CYP1A2 (92898). Induction or inhibition of CYP1A2 by fo-ti has not been reported in humans.
|
Theoretically, fo-ti might increase the levels and clinical effects of drugs metabolized by CYP2B6.
Details
Animal research suggests that fo-ti might inhibit CYP2B6 (92898). One in vitro study suggests that the degree of CYP2B6 inhibition may depend on the type of fo-ti extract (i.e., the raw plant leads to greater inhibition than extensively processed extracts) (112351). However, this interaction has not been reported in humans.
|
Theoretically, fo-ti may increase the levels and clinical effects of drugs metabolized by CYP2C19.
Details
Animal and in vitro research suggests that fo-ti may inhibit CYP2C19 (12479,92898,112351). An in vitro study suggests that the degree of CYP2C19 inhibition may depend on the type of fo-ti extract (i.e., the raw plant leads to greater inhibition than extensively processed extracts) (112351). However, this interaction has not been reported in humans.
|
Theoretically, fo-ti might increase the levels and clinical effects of drugs metabolized by CYP2C8.
Details
In vitro research suggests that fo-ti might inhibit CYP2C8 (112351). However, this interaction has not been reported in humans.
|
Theoretically, fo-ti may increase the levels and clinical effects of drugs metabolized by CYP2C9.
Details
|
Theoretically, fo-ti may increase the levels and clinical effects of drugs metabolized by CYP2D6.
Details
Animal research suggests that fo-ti might inhibit CYP2D6 (92898). Additionally, an in vitro study suggests that the degree of CYP2D6 inhibition may depend on the type of fo-ti extract (i.e., the raw plant leads to greater inhibition than extensively processed extracts) (112351). However, this interaction has not been reported in humans.
|
Theoretically, fo-ti might increase the levels and clinical effects of drugs metabolized by CYP3A4.
Details
In vitro research suggests that fo-ti might inhibit CYP3A4 (12479,112351). One in vitro study suggests that the degree of CYP3A4 inhibition may depend on the type of fo-ti extract (i.e., the raw plant leads to greater inhibition than extensively processed extracts) (112351). However, this evidence conflicts with animal research suggesting that fo-ti does not inhibit CYP3A4 (92898). This interaction has not been reported in humans.
|
Theoretically, fo-ti, particularly raw fo-ti root, might increase the risk of hypokalemia and cardiotoxicity when taken with digoxin.
Details
|
Theoretically, fo-ti, particularly raw fo-ti root, might increase the risk of hypokalemia when taken with diuretic drugs.
Details
|
Theoretically, taking large amounts of fo-ti might interfere with hormone replacement therapy through competition for estrogen receptors.
Details
|
Theoretically, fo-ti might increase the risk of liver damage when taken with hepatotoxic drugs.
Details
|
Theoretically, fo-ti, particularly raw fo-ti root, might increase the risk of fluid and electrolyte depletion when taken with stimulant laxatives.
Details
|
Theoretically, fo-ti might increase or decrease the levels and clinical effects of sulindac.
Details
Animal research suggests that the type of fo-ti extract might affect the levels of sulindac differently; the raw plant may increase levels, but processed parts may decrease levels (112351). Induction or inhibition of CYP1A2 by fo-ti has not been reported in humans.
|
Theoretically, fo-ti might increase the effects and adverse effects of warfarin.
Details
Fo-ti may have stimulant laxative effects and cause diarrhea, especially when the raw or unprocessed fo-ti root is used (5,12,16459,50733,99855). Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding. Also, fo-ti has been linked to cases of acute liver failure which can decrease clotting factor production and increase the effects of warfarin. In one case, a patient who had been stable on warfarin presented with acute hepatitis and an INR elevated to 14.98. The patient had been taking fo-ti for 90 days prior to admission. Discontinuation of warfarin and fo-ti lead to a decrease in the INR and full recovery (17192).
|
Glossy privet is thought to have diuretic properties. Theoretically, due to these potential diuretic effects, glossy privet might reduce excretion and increase levels of lithium. The dose of lithium might need to be decreased.
|
Theoretically, concomitant use of goji fruit polysaccharides or goji root bark with antidiabetes drugs might have additive effects.
Details
Animal and in vitro research show that goji root bark and fruit polysaccharides might have hypoglycemic effects (7126,92118,94667). However, clinical research has only shown that taking goji fruit polysaccharides with or without antidiabetes drugs modestly reduces postprandial glucose when compared with control, with no reports of hypoglycemia (92117).
|
Theoretically, concomitant use of goji root bark, but not goji fruit, with antihypertensive drugs might have additive effects.
Details
|
Theoretically, goji berry might inhibit CYP2C19 and reduce metabolism of CYP2C19 substrates.
Details
In vitro research shows that goji berry tincture and juice inhibit CYP2C19 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP2C19 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might inhibit CYP2C9 and reduce metabolism of CYP2C9 substrates.
Details
In vitro research shows that goji berry tincture and juice inhibit CYP2C9 enzymes (105486). Additionally, multiple case reports suggest that goji berry concentrated tea and juice inhibit the metabolism of warfarin, a CYP2C9 substrate (7158,105462). Concomitant use with goji may decrease metabolism and increase levels of CYP2C9 substrates.
|
Theoretically, goji berry might inhibit CYP2D6 and reduce metabolism of CYP2D6 substrates.
Details
In vitro research shows that goji berry juice inhibits CYP2D6 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP2D6 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might inhibit CYP3A4 and reduce metabolism of CYP3A4 substrates.
Details
In vitro research shows that goji berry juice inhibits CYP3A4 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP3A4 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might increase the levels and clinical effects of flecainide.
Details
In one case report, a 75-year-old patient stable on flecainide and warfarin presented to the emergency room with fainting and pleomorphic arrhythmia caused by flecainide toxicity. Flecainide toxicity was attributed to drinking 1-2 glasses of concentrated goji tea daily for 2 weeks. Theoretically, goji may have inhibited the cytochrome P450 2D6 (CYP2D6) metabolism of flecainide (105462).
|
Goji can increase the effects of warfarin and possibly increase the risk of bleeding.
Details
There are at least 5 case reports of increased international normalized ratio (INR) in patients stabilized on warfarin who began drinking goji juice, concentrated goji tea, or goji wine (7158,16529,23896,105462,105487). Goji may inhibit the metabolism of warfarin by cytochrome P450 2C9 (CYP2C9) (7158).
|
Theoretically, poria mushroom might decrease the clinical effects of anticholinergic drugs.
Details
In animal research, poria mushroom essential oil reduces acetylcholinesterase activity (111917). This interaction has not been shown in humans.
|
Theoretically, poria mushroom might have additive effects when used with cholinergic drugs.
Details
In animal research, poria mushroom essential oil reduces acetylcholinesterase activity (111917). This interaction has not been shown in humans.
|
Theoretically, taking poria mushroom extract may enhance the therapeutic and adverse effects of sedatives.
Details
Animal research shows that poria mushroom extract has sedative properties (111916). This interaction has not been shown in humans.
|
Theoretically, white mulberry leaf might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, white mulberry leaf might slow the elimination and increase the adverse effects of drugs which are OCT2 substrates.
Details
Animal research shows that coadministration of white mulberry leaf extract with metformin, an OCT2 substrate, slows the renal elimination of metformin via inhibition of OCT2 activity (103869). OCT2 is expressed in the kidneys and is responsible for transporting cationic drugs into tubular epithelial cells in order to be excreted in the urine.
|
Below is general information about the adverse effects of the known ingredients contained in the product Shou Wu Plus 500 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, fo-ti may be unsafe.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, nausea, and vomiting with use of unprocessed fo-ti.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity with processed or unprocessed fo-ti.
Dermatologic ...Orally, one case of a fine maculopapular rash was reported in a patient taking the herbal product known as Shen-Min, which contains fo-ti. Symptoms resolved within three weeks after discontinuing the product (14482). It is unclear if the rash was due to fo-ti or other ingredients in the herbal product.
Gastrointestinal ...Orally, unprocessed fo-ti may cause diarrhea, abdominal pain, nausea, and vomiting (12,50733).
Hematologic ...Orally, one case of mild eosinophilia was reported in a patient taking the herbal product known as Shen-Min, which contains fo-ti. Symptoms resolved within three weeks after discontinuing the product (14482). It is unclear if this reaction was due to fo-ti or other ingredients in the herbal product. A case of agranulocytosis was reported in a 65-year-old female taking fo-ti 30 grams/day for 17 days. The patient recovered gradually following a 15-day hospitalization, which included treatment with intravenous steroids and granulocyte colony-stimulating factor (112231).
Hepatic
...Orally, cases of liver damage due to both processed and unprocessed fo-ti have been well documented in the medical literature.
(7626,7627,14327,14339,14347,14482,16459,17192,50711,50726)(50727,50729,92892,92895,112231).
In a systematic review, around 450 cases of hepatitis associated with fo-ti were identified. These cases occurred in patients 5-78 years of age. Liver damage occurred at a wide range of doses, formulations, and durations of intake. The type of liver injury ranged from hepatocellular, to cholestatic, or mixed. Outcomes ranged from full recovery to cirrhosis, liver transplantation, and/or death. The evidence suggests that when the daily fo-ti dose is less than 12 grams, the median time to occurrence of liver damage is 60 days. When the daily fo-ti dose is more than 12 grams, the median time to liver damage is 30 days (92895). Presenting signs and symptoms may include jaundice, abdominal pain, nausea, fatigue, loss of appetite, dark urine, myalgias, and elevations in liver function tests (LFTs), ferritin, transferrin, prothrombin time, and INR (17192,92892). Other manifestations may include fever, skin rash, thrombocytopenia, pancytopenia, and arthralgias. Symptoms and increased LFTs usually seem to resolve within a month after discontinuing fo-ti (7626,7627,14339,14347,14482,16459). In one case series, liver enzymes began to normalize 48 hours after discontinuation of fo-ti and treatment with S-adenosylmethionine, compound glycyrrhizin injection, polyene phosphatidylcholine, and reduced glutathione. All patients were eventually discharged home in stable condition (92892). Rechallenge with fo-ti should not be attempted. A patient who had recovered from hepatitis associated with fo-ti use presented with myalgias and markedly elevated LFTs after a single dose of the herb (17192).
It is thought that this idiosyncratic reaction leading to liver damage is at least partially related to genetic polymorphisms. Cytochrome P450 1A2 (CYP1A2) is the predominant enzyme involved in biotransformation of emodin, a constituent of fo-ti thought to play a role in liver damage. In one genetic study, the frequency of CYP1A2*1C mutation in fo-ti induced drug-induced liver injury patients was 46.5%, which is significantly higher than the 27.9% frequency of liver injury reported in healthy patients without the mutation. Patients with a CYP1A2*1C mutation may have decreased activity of the CYP1A2 enzyme, which could inhibit the metabolism of fo-ti, causing an accumulation of toxic substances (92897).
General
...Orally, goji fruit seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Allergic reactions including anaphylaxis.
Dermatologic ...A case of photosensitivity secondary to consumption of goji berries has been reported. The patient presented with a pruriginous eruption that had lasted for 2 weeks. The patient had been taking goji berries for 5 months and cat's claw for 3 months. Upon testing, it was revealed that the patient tested positive to goji berries in a photoprovocation test, but not to cat's claw (40263).
Hepatic ...Orally, consumption of goji berries has been associated with a single case report of autoimmune hepatitis (52541). A case of acute hepatitis has also been reported in a female who consumed 2 ounces of a specific combination product (Euforia, Nuverus International) containing goji berry, pomegranate, curcumin, green tea, noni, acai berry, aloe vera, blueberry, resveratrol, mangosteen, and black seed, daily for one month. It is unclear whether the liver injury was caused by goji berry, other ingredients, or the combination (90125).
Immunologic ...Several cases of allergic reactions secondary to consumption of goji berries have been reported. Symptoms included facial angioedema with dyspnea, pharyngeal itching, itching in the mouth, ears, and axilla, labial angioedema, and perioral skin rash (92116). Anaphylaxis has also been reported (52538).
General ...Orally, poria mushroom seems to be well tolerated. However, a thorough evaluation of safety outcomes has not been conducted.
Immunologic ...Allergic reactions have been reported rarely, including allergic rhinitis and allergic asthma (12).
General
...Orally, white mulberry leaf seems to be well tolerated.
Most Common Adverse Effects:
Orally: Transient bloating, constipation, flatulence, and loose stools.
Gastrointestinal ...Orally, white mulberry leaf powder 4. 6 grams three times daily for 4 weeks was associated with bloating and flatulence in 50% of patients, loose stools in 25% of patients, and constipation in 21% of patients in one clinical study. However, reports of these adverse effects decreased over the course of the 12-week study, suggesting that for some patients the adverse effects may be transient in nature (103870).