Each capsule contains: Glucosamine Sulfate -Potassium Chloride Complex (providing glucosamine sulfate 750 mg) 1000 mg • Boron (as boric acid) 1.5 mg • Manganese (from sulfate monohydrate) 1 mg • Selenium (from selenomethionine) 13 mcg.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Bio Organics Glucosamine Sulfate Complex 1000. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Bio Organics Glucosamine Sulfate Complex 1000. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Boron is safe in amounts that do not exceed the tolerable upper intake level (UL) 20 mg daily (7135). ...when used vaginally. Boric acid, the most common form of boron, has been safely used for up to six months (15443,15444,15445,15446,15458,15449,15451,15453,15454). ...when used topically. Boron, in the form of sodium pentaborate pentahydrate 3% gel, has been applied to the skin with apparent safety up to four times daily for up to 5 weeks (95660,109557).
POSSIBLY UNSAFE ...when used orally in doses exceeding the UL of 20 mg daily. Higher doses might adversely affect the testes and male fertility (7135). Poisoning has occurred after ingestion of boron 2.12 grams daily for 3-4 weeks (17). Death has occurred after ingesting a single dose of 30 grams (36848,36863).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Boron is safe in amounts that do not exceed the tolerable upper intake level (UL). The UL by age is 3 mg daily at 1-3 years, 6 mg daily at 4-8 years, 11 mg daily at 9-13 years, and 17 mg daily at 14 years or older (7135). The UL for infants has not been determined (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses exceeding the age-based UL (7135).
...when applied topically in large quantities. Infant deaths have occurred after the use of topical boric acid powder to prevent diaper rash (36873,36874).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Boron is safe in amounts that do not exceed the UL during pregnancy or lactation, which is 20 mg daily in those 19-50 years of age or 17 mg daily for those 14-18 years of age (7135).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher doses might impair growth and cause adverse effects in the developing fetus (7135,102058). ...when used vaginally. Intravaginal boric acid has been associated with a 2.7- to 2.8-fold increased risk of birth defects when used during the first 4 months of pregnancy (15443,15645).
LIKELY SAFE ...when glucosamine sulfate is used orally and appropriately. Glucosamine sulfate has been used safely in multiple clinical trials at a dose of 1000-1500 mg daily for 4 weeks to 3 years (2604,7026,8942,11340,12461)(14305,16717,89558,89567,94380,94382,95785).
POSSIBLY SAFE ...when glucosamine hydrochloride is used orally and appropriately. Glucosamine hydrochloride has been used with apparent safety at a dose of 1400-1600 mg daily for up to 2 years (4237,13579,14809,18344,42477,89516,89519,95784). Glucosamine hydrochloride 2 grams daily has also been used with apparent safety for up to 3 weeks (103281). ...when N-acetyl glucosamine is used orally and appropriately. N-acetyl glucosamine 100 mg daily has been used with apparent safety for up to 24 weeks (95795). ...when N-acetyl glucosamine is applied topically and appropriately. A 2% N-acetyl glucosamine cream has been safely used for up to 10 weeks (92721). ...when N-acetyl glucosamine is used rectally and appropriately. N-acetyl glucosamine 3-4 grams daily in 2 divided doses has been safely used (10234). ...when glucosamine sulfate is used intramuscularly and appropriately, short-term. Intramuscular glucosamine sulfate seems to be well tolerated when given twice weekly for up to 6 weeks (2605).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Oral manganese is safe when used in doses below the tolerable upper intake level (UL) of 11 mg daily for adults 19 years and older (1994,7135). ...when used parenterally and appropriately. Parenteral manganese chloride and manganese sulfate are FDA-approved prescription products.
POSSIBLY UNSAFE ...when used orally in high doses. Doses exceeding 11 mg daily can cause significant adverse effects (7135). ...when used parenterally in moderate or high doses, long-term. Reports of neurotoxicity and Parkinson-like symptoms have been reported with parenteral nutrition manganese doses above 60 mcg daily. It is recommended that adults on long-term parenteral nutrition receive manganese in doses of no more than 55 mcg daily (99302).
LIKELY UNSAFE ...when inhaled in moderate doses, long-term. According to the US Occupational Safety and Health Administration (OSHA), the permissible exposure limit (PEL) for manganese is 5 mg/m3. Exposure to higher amounts of manganese dust or fumes has been associated with central nervous system toxicity, Parkinson-like symptoms, and poor bone health (61296,102516).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Manganese is safe in children when used in daily doses less than the tolerable upper intake level (UL) of 2 mg in children 1-3 years, 3 mg in children 4-8 years, 6 mg in children 9-13 years, and 9 mg in children 14-18 years (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
Daily doses greater than the UL are associated with a greater risk of toxicity (7135).
CHILDREN: LIKELY UNSAFE
when inhaled at moderate doses, long-term.
Exposure to high amounts of manganese dust has been associated with central nervous system toxicity and Parkinson-like symptoms (61296).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Manganese is safe when used in doses below the tolerable upper intake level (UL) of 11 mg daily during pregnancy or lactation in those aged 19 or older. However, those under 19 years of age should limit doses to less than 9 mg daily (7135).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses over the UL are associated with a greater risk of toxicity (7135). Additionally, observational research shows that adults with higher blood manganese levels have greater odds of delivering low birth weight or small for gestational age (SGA) male, but not female, infants (102515).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when inhaled at moderate doses, long-term.
Manganese salts can cross the placenta, and animal research suggests that large amounts of manganese may be teratogenic (61296).
LIKELY SAFE ...when used orally and appropriately. Selenium appears to be safe when taken short-term in amounts below the tolerable upper intake level (UL) of 400 mcg daily (4844,7830,7831,7836,7841,9724,9797,14447,17510,17511)(17512,17513,17515,17516,97087,97943,109085); however, there is concern that taking selenium long-term might not be safe. Some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). Some evidence also shows that taking a selenium supplement 200 mcg daily for an average of 3-8 years increases the risk of developing type 2 diabetes (97091,99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661). ...when used intravenously. Selenium, as selenious acid, is an FDA-approved drug. Sodium selenite intravenous infusions up to 1000 mcg daily have been safely used for up to 28 days (90347,92910).
POSSIBLY UNSAFE ...when used orally in high doses or long-term. Doses above 400 mcg daily can increase the risk of developing selenium toxicity (4844,7825). Additionally, some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). There is also concern that taking a selenium supplement 200 mcg daily long-term, for an average of 3-8 years, increases the risk of developing type 2 diabetes (99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Selenium seems to be safe when used short-term in doses below the tolerable upper intake level (UL) of 45 mcg daily for infants up to age 6 months, 60 mcg daily for infants 7 to 12 months, 40-90 mcg daily for children 1 to 3 years, 100-150 mcg daily for children 4 to 8 years, 200-280 mcg daily for children 9 to 13 years, and 400 mcg daily for children age 14 years and older (4844,86095); however, there is some concern that long-term use might not be safe. ...when used via a nasogastric tube in premature infants (7835,9764).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily (4844,17507,74419,74481,74391); however, there is concern that long-term use might not be safe.
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844).
LACTATION: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily when taken short-term (4844,74467); however, there is concern that long-term use might not be safe.
LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844,7838). ...when used orally in HIV-positive women. Selenium supplementation in HIV-positive women not taking highly active antiretroviral therapy may increase HIV-1 levels in breast milk (90358).
Below is general information about the interactions of the known ingredients contained in the product Bio Organics Glucosamine Sulfate Complex 1000. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Acetaminophen might interfere with the activity of glucosamine sulfate by interacting with the sulfate portion.
Details
Anecdotal reports suggest that adding glucosamine to an acetaminophen regimen might decrease pain control in patients with osteoarthritis (14806). Some research suggests that the sulfate portion of glucosamine sulfate might contribute to its effect in osteoarthritis. Since acetaminophen metabolism requires sulfur and reduces serum sulfate concentrations, acetaminophen could theoretically interfere with the action of glucosamine sulfate. Conversely, the administration of sulfate could theoretically decrease the effectiveness of acetaminophen in sulfate-deficient people by increasing its clearance (10313).
|
Despite initial concerns, it is unlikely that glucosamine will interfere with the effects of antidiabetes drugs.
Details
In vitro and animal research has suggested that glucosamine might increase insulin resistance or decrease insulin production (371,372,3406,18342,18343). This has raised concerns that taking glucosamine might worsen diabetes and decrease the effectiveness of diabetes drugs. However, clinical research suggests that glucosamine does not have adverse effects on blood glucose or glycated hemoglobin (HbA1C) in healthy, obese, or type 2 diabetes patients (7026,7075,8942,10311,10317,15111).
|
Theoretically glucosamine may induce resistance to topoisomerase II inhibitors.
Details
In vitro research suggests that glucosamine might induce resistance to etoposide (VP16, VePesid) and doxorubicin (Adriamycin) by reducing inhibition of topoisomerase II, an enzyme required for DNA replication in tumor cells (7639). This effect has not been reported in humans.
|
Glucosamine might increase the anticoagulant effects of warfarin and increase the risk of bruising and bleeding.
Details
In two individual case reports, glucosamine/chondroitin combinations were associated with a significant increase in international normalized ratio (INR) in patients previously stabilized on warfarin (11389,16130). In one case, the increase in INR occurred only after tripling the dose of a glucosamine/chondroitin supplement from 500 mg/400 mg daily to 1500/1200 mg daily (16130). Additionally, 20 voluntary case reports to the U.S. Food & Drug Administration (FDA) have linked glucosamine plus chondroitin with increased INR, bruising, and bleeding in patients who were also taking warfarin (16130). There have also been 20 additional case reports to the World Health Organization (WHO) that link glucosamine alone to increased INR in patients taking warfarin (16131). The mechanism of this interaction is unclear. Glucosamine is a small component of heparin, but is not thought to have anticoagulant activity; however, animal research suggests that it might have antiplatelet activity (16131).
|
Theoretically, the risk for manganese toxicity might increase when taken with antipsychotic drugs.
Details
Hallucinations and behavioral changes have been reported in a patient with liver disease who was taking haloperidol and manganese. Researchers speculate that taking manganese along with haloperidol, phenothiazine-derivatives, or other antipsychotic medications might increase the risk of manganese toxicity in some patients (61493).
|
Theoretically, manganese might reduce the absorption of quinolone antibiotics.
Details
Manganese is a multivalent cation. Interactions resulting in reduced quinolone absorption have been reported between quinolones and other multivalent cations, such as calcium and iron (488).
|
Theoretically, manganese might reduce the absorption of tetracycline antibiotics.
Details
Manganese is a multivalent cation. Interactions resulting in reduced tetracycline absorption have been reported between tetracyclines and other multivalent cations, such as calcium and iron (488).
|
Selenium may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
Clinical research suggests that taking selenium 10 mcg/kg/day can increase bleeding times by increasing prostacyclin production, which inhibits platelet activity (14540). Other clinical research suggests that taking selenium 75 mcg daily, in combination with ascorbic acid 600 mg, alpha-tocopherol 300 mg, and beta-carotene 27 mg, reduces platelet aggregation (74406).
|
Theoretically, selenium might prolong the sedating effects of barbiturates.
Details
|
Contraceptive drugs might increase levels of selenium, although the clinical significance of this effect is unclear.
Details
Some research suggests that oral contraceptives increase serum selenium levels in women taking oral contraceptives; however, other research shows no change in selenium levels (14544,14545,14546,101343). It is suggested that an increase could be due to increased carrier proteins, indicating a redistribution of selenium rather than a change in total body selenium (14545).
|
Gold salts might interfere with selenium activity in tissues.
Details
|
Theoretically, selenium supplementation may reduce the effectiveness of immunosuppressant therapy.
Details
|
Selenium might reduce the beneficial effects of niacin on high-density lipoprotein (HDL) levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as selenium, or to the combination. It also is not known whether it will occur in other patient populations.
|
Theoretically, selenium might interfere with warfarin activity.
Details
Animal research suggests that selenium can increase warfarin activity. Selenium might interact with warfarin by displacing it from albumin binding sites, reducing its metabolism in the liver, or by decreasing production of vitamin K-dependent clotting factors (14541). Selenium can also prolong bleeding times in humans by increasing prostacyclin production, which inhibits platelet activity (14540).
|
Below is general information about the adverse effects of the known ingredients contained in the product Bio Organics Glucosamine Sulfate Complex 1000. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, boron is generally well tolerated when used in doses below the tolerable upper intake level (UL) of 20 mg.
Vaginally, boron is well tolerated.
Most Common Adverse Effects:
Orally: Anorexia, dermatitis, erythema, indigestion.
Vaginally: Burning and pain.
Dermatologic
...Orally, chronic use of 1 gram daily of boric acid or 25 grams daily of boric tartrate can cause dermatitis and alopecia (7135).
Larger doses can result in acute poisoning. Symptoms of poisoning in adults and children may include skin erythema, desquamation, and exfoliation (17).
Gastrointestinal
...Orally, chronic use of 1 gram daily of boric acid or 25 grams daily of boric tartrate can cause anorexia and indigestion (7135).
Larger doses can result in acute poisoning. Children who have ingested 5 grams or more of borates can have persistent nausea, vomiting, and diarrhea leading to acute dehydration, shock, and coma. Adults who have ingested 15-20 grams of borate can exhibit nausea, vomiting, diarrhea, epigastric pain, hematemesis, and a blue-green discoloration of feces and vomit (17).
Genitourinary ...Vaginally, boric acid can cause vulvovaginal burning and dyspareunia in males if intercourse occurs shortly after vaginal treatment (15447).
Neurologic/CNS ...Orally, large doses can result in acute poisoning. Poisoning with boron can cause hyperexcitability, irritability, tremors, convulsions, weakness, lethargy, and headaches (17).
Ocular/Otic ...Exposure to boric acid or boron oxide dust has been reported to cause eye irritation (36852).
Pulmonary/Respiratory ...Exposure to boric acid and boron oxide dust has been reported to cause mouth and nasal passage irritation, sore throat, and productive cough (36852).
General
...Orally, all forms of glucosamine seem to be well tolerated.
Topically and rectally, N-acetyl glucosamine also seems to be well tolerated. Intramuscularly, glucosamine sulfate seems to be well tolerated. However, a thorough evaluation of safety outcomes has not been conducted for non-oral routes of administration.
Most Common Adverse Effects:
Orally: Bloating, constipation, cramps, diarrhea, heartburn, nausea.
Serious Adverse Effects (Rare):
Orally: There have been rare reports of severe allergic reactions and hepatotoxicity.
Cardiovascular
...One case of mesenteric occlusion in a clinical trial was considered possibly related to use of oral glucosamine hydrochloride and chondroitin sulfate (89520).
Some observational research has found that glucosamine use in patients with osteoarthritis is associated with a higher risk of cardiovascular disease (CVD) events when compared with non-use (109642). However, glucosamine users tended to be older, have multiple comorbidities, and be on antihyperlipidemic or antiplatelet therapy. Furthermore, other observational research in healthy adults has found that glucosamine use is associated with a reduced risk of fatal and non-fatal CVD events (99682). Higher quality, prospective research is needed to clarify the relationship, if any, between glucosamine and CVD risk.
Dermatologic ...Orally, glucosamine might cause skin reactions, including itching, rash, and erythema (2608,20084,89567,110628,113636). Also, fingernail and toenail toughening, with an increased rate of growth, has been reported (89572). Topically, N-acetyl glucosamine 2% with niacinamide 4% cream might cause rare skin reactions (92721). Photosensitization that was reproducible with re-challenge was reported in a case report of an individual using glucosamine (form unknown) and chondroitin (10408).
Endocrine ...Orally, glucosamine does not seem to impact blood glucose. Preliminary research and anecdotal reports have found that various forms of glucosamine might increase insulin resistance or decrease insulin production, increasing fasting plasma glucose levels (22,371,372,1203,3406,5059,7637,14810). This has raised concerns that taking glucosamine sulfate might worsen diabetes and decrease the effectiveness of diabetes drugs. However, clinical research suggests that various forms of glucosamine do not have adverse effects on blood glucose or glycated hemoglobin (HbA1C) in healthy, obese, patients with type 2 diabetes or impaired glucose tolerance (7026,7075,7638,8942,10311,10317,12107,14808,15111,89563).
Gastrointestinal ...Orally, glucosamine has been associated with gastrointestinal problems, including epigastric and abdominal pain, cramps, heartburn, diarrhea, nausea, dyspepsia, vomiting, constipation, and flatulence (1520,2608,16717,20084,20104,20105,89561,89562,89567,89568)(108897,110628,111647,113636). In older persons, use of glucosamine sulfate is associated with oral dryness (89564). In a clinical trial, a case of Helicobacter pylori gastritis was considered probably related to the use of glucosamine hydrochloride (89516).
Hepatic ...Although relatively uncommon, combinations of glucosamine and chondroitin sulfate have been associated with acute liver injury that mimics autoimmune hepatitis. Of 151 patients at an outpatient clinic for liver diseases, 23 acknowledged use of products containing glucosamine (form unspecified) and/or chondroitin. However, only 2 cases had an apparent relationship between transaminase elevation and the use of recommended doses of glucosamine and chondroitin sulfate. Aminotransferase levels, which were increased by four- to seven-fold, returned to normal following discontinuation of treatment (89515). In another case, a 65-year-old male presented to the hospital with signs and symptoms of drug-induced autoimmune hepatitis. The patient had used Condrosulf, containing chondroitin sulfate, for two years, followed by Vita Mobility Complex, containing chondroitin sulfate and glucosamine sulfate, for 8 weeks. The patient required maintenance treatment with azathioprine to remain in remission (89518). A case of acute cholestatic hepatitis due to Glucosamine Forte, which contains glucosamine hydrochloride, chondroitin sulfate, Devil's claw, and shark cartilage, has been reported (89522). It is unclear whether these adverse events were related to glucosamine, other ingredients, or the combination.
Immunologic ...There is some concern that glucosamine products might cause allergic reactions in sensitive individuals. One review of glucosamine-related adverse events in Australia found that 72% of all reports involved hypersensitivity reactions. Of these reactions, 35% were mild, including pruritis, urticaria, and lip edema, 49% were moderate, including dyspnea, and 16% were severe, including gait disturbance, somnolence, and hypotension. Anaphylaxis was reported in 1.5% of cases (102115). Also, in one clinical trial, a single patient developed allergic dermatitis considered to be likely due to glucosamine hydrochloride (89516). Glucosamine is derived from the exoskeletons of shrimp, lobster, and crabs. However, it is unclear if these adverse reactions were due to a shellfish sensitivity or general atopy. Additionally, shellfish allergies are caused by IgE antibodies to antigens in the meat of shellfish, not to antigens in the exoskeleton. Regardless, it is possible that some glucosamine products might be contaminated by this allergen during production (102115).
Neurologic/CNS ...Orally, glucosamine has been reported to cause drowsiness and headache (2608,89561,113636). Glucosamine plus chondroitin combination products that also contain manganese (e.g., CosaminDS) should always be taken according to product directions. When taken at doses slightly higher than the recommended dose, these products can sometimes supply greater than the tolerable upper limit (UL) for manganese which is 11 mg/day. Ingestion of more than 11 mg/day of manganese might cause significant central nervous system toxicity (7135).
Ocular/Otic ...In older persons, use of glucosamine sulfate has been associated with ocular dryness (89564). Increased intraocular pressure has occurred with glucosamine sulfate supplementation (89573,112460). Data from the FDA MedWatch adverse event reporting system shows that 0.21% of subjects taking glucosamine reported glaucoma, which is significantly greater than the 0.08% of subjects who reported glaucoma while using any other drug (112460).
Pulmonary/Respiratory ...Cases of asthma exacerbations associated with the use of glucosamine (form unknown)-chondroitin products have been reported (10002).
Renal ...Anecdotal reports have associated glucosamine with nephrotoxicity signals such as modestly elevated creatine phosphokinase and 1+ to 2+ proteinuria, but changes in kidney function have not been reported in long-term studies (7026,8942,10408,10409). It was also noted that effects may have been due to other concurrent medications or impurities in glucosamine-chondroitin products. Cases of acute interstitial nephritis induced by glucosamine (form unknown) have also been reported (89523).
Other ...There has been concern that glucosamine might increase the risk of metabolic disturbances resulting in increased cholesterol levels and blood pressure. However, glucosamine does not appear to increase the risk of these adverse effects. Taking glucosamine sulfate for up to 3 years does not significantly increase blood glucose or lipid levels, or cause any other disturbances in metabolism (7026,7075,8942,10311,10317).
General
...Orally and parenterally, manganese is generally well tolerated when used in appropriate doses.
High doses might be unsafe.
Serious Adverse Effects (Rare):
All routes of administration: Neurotoxicity, including Parkinson-like extrapyramidal symptoms, when used in high doses.
Cardiovascular ...Chronic occupational exposure to manganese dust or fumes can cause orthostatic hypotension, and heart rate and rhythm disturbances (61363).
Endocrine ...Chronic occupational exposure to manganese dust or fumes can cause elevations in thyrotropin-releasing hormone (TRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels (61378).
Hepatic ...Manganese intoxication may cause cirrhosis and hepatic steatosis. In one case, a 13-year-old female with manganese intoxication developed severe, life-threatening neurological symptoms, with liver biopsy indicating incomplete cirrhosis and microvesicular steatosis. Chelation therapy and multiple rounds of therapeutic plasma exchange were required before symptoms resolved. The source of manganese exposure was not identified, and it is not clear if the impaired liver function contributed to the manganese accumulation or if elevated manganese exposure led to the liver damage.
Musculoskeletal ...Chronic occupational exposure to manganese dust or fumes has been associated with lower bone quality in females, but not males, suggesting that prolonged manganese exposure might increase the risk of osteoporosis in females (102516). A meta-analysis of 11 observational studies in adults also suggests that increased environmental exposure to airborne manganese sources is associated with lower motor function scores (108537).
Neurologic/CNS
...Orally, there is concern that higher doses of manganese might increase the risk of neurotoxicity, including Parkinson-like extrapyramidal symptoms (7135,10665,10666).
One severe case of irreversible Parkinson disease possibly related to taking manganese 100 mg daily for 2-4 years has been reported (96418). In another case, a 13-year-old female with manganese intoxication (diagnosed from blood manganese levels and cranial MRI evidence) developed severe neurological symptoms including loss of consciousness, decorticate posture, clonus, increased reflexes in the extremities, isochoric pupils, and no painful stimulus response. Liver biopsy also showed incomplete cirrhosis and microvesicular steatosis. The patient was intubated, and chelation therapy and multiple rounds of therapeutic plasma exchange were required before symptoms resolved. The source of the child's manganese exposure was not identified (112137). Individuals with impaired manganese excretion can also experience these effects even with very low manganese intake. Manganese accumulation due to chronic liver disease seems to cause Parkinson-like extrapyramidal symptoms, encephalopathy, and psychosis (1992,7135). One review recommends stopping supplementation if aminotransferase or alkaline phosphatase levels rise beyond twice normal (99302).
Chronic occupational exposure to manganese dust or fumes can also cause extrapyramidal reactions (1990,7135). In 1837, Couper observed that exposure to manganese dust particles produces a neurological syndrome characterized by muscle weakness, tremor, bent posture, whispered speech, and excess salivation (61264). Additionally, observational research in children has found that elevated manganese levels detected in the hair and fingernails due to environmental exposure may be associated with impaired neurocognitive function or development (108535). A meta-analysis of 11 observational studies in adults also suggests that increased environmental exposure to airborne manganese sources is associated with lower cognitive function scores (108537).
Intravenously, manganese might increase the risk of neurotoxicity when administered at high doses or for an extended duration. Cases of Parkinson-like symptoms have been reported in patients receiving parenteral nutrition containing more than 60 mcg of manganese daily. Moderate MRI intensity uptake for manganese in the globus pallidus and basal ganglion areas of the brain has been shown in patients receiving parenteral manganese (96416,99302).
Psychiatric ...Chronic occupational exposure to manganese dust or fumes can cause mood disturbance and dementia (1990,7135). A case report describes a man who presented with confusion, psychosis, dystonic limb movements, and cognitive impairment after chronic industrial manganese exposure (99415). Symptoms of manganese toxicity from inhalational exposure develop slowly with initial fatigue and personality changes, progressing to hallucinations, delusions, hyperexcitability, Parkinson-like symptoms, dystonia, and dementia (99415). Additionally, observational research has found that chronic environmental exposure to manganese sources such as mining operations and various industrial processes may be associated with a greater risk for developing symptoms of depression (108536).
Pulmonary/Respiratory ...Chronic occupational exposure to manganese dust or fumes can cause acute chemical pneumonitis, pulmonary edema, or acute tracheobronchitis (61495).
General
...Orally, selenium is generally well-tolerated when used in doses that do not exceed the tolerable upper intake level (UL) of 400 mcg daily.
Intravenously, selenium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Gastric discomfort, headache, and rash. Excessive amounts can cause alopecia, dermatitis, fatigue, nail changes, nausea and vomiting, and weight loss.
Serious Adverse Effects (Rare):
Orally: Excessive ingestion has led to cases of multi-organ failure and death.
Dermatologic ...Excess selenium can produce selenosis in humans, affecting liver, skin, nails, and hair (74304,74326,74397,74495,90360) as well as dermatitis (74304). Results from the Nutritional Prevention of Cancer Trial conducted among individuals at high risk of nonmelanoma skin cancer demonstrate that selenium supplementation is ineffective at preventing basal cell carcinoma and that it increases the risk of squamous cell carcinoma and total nonmelanoma skin cancer (10687). Mild skin rash has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Endocrine
...Multiple clinical studies have found an association between increased intake of selenium, either in the diet or as a supplement, and the risk for type 2 diabetes (97091,99661).
One meta-analysis shows that a selenium plasma level of 90 mcg/L or 140 mcg/L is associated with a 50% or 260% increased risk for developing type 2 diabetes, respectively, when compared with plasma levels below 90 mcg/L. Additionally, consuming selenium in amounts exceeding the recommended dietary allowance (RDA) is associated with an increased risk of developing diabetes when compared with consuming less than the RDA daily. Also, taking selenium 200 mcg daily as a supplement is associated with an 11% increased risk for diabetes when compared with a placebo supplement (99661).
Hypothyroidism, secondary to iodine deficiency, has been reported as a result of selenium intravenous administration (14563,14565). One large human clinical trial suggested a possible increased risk of type 2 diabetes mellitus in the selenium group (16707).
Gastrointestinal ...In human research, nausea, vomiting, and liver dysfunction has been reported as a result of high selenium exposure (74439,74376). Mild gastric discomfort has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Genitourinary ...The effect of selenium supplementation on semen parameters is unclear. In human research, selenium supplementation may reduce sperm motility (9729); however, follow-up research reported no effect on sperm motility or any other semen quality parameter (74441).
Neurologic/CNS ...Chronic exposure to organic and inorganic selenium may cause neurotoxicity, particularly motor neuron degeneration, leading to an increased risk of amyotrophic lateral sclerosis (ALS) (74304). Mild headache has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).