Each capsule contains: Chromium (as chromium picolinate) 200 mcg • Proprietary Fat Burning Complex 219 mg: 3-Acetyl-7-Oxo Dehydroepiandrosterone (7-Keto), Evodia (fruit), Yohimbe bark extract • Proprietary Sustained Energy Blend 202 mg: Rhodiola rosea extract (root, 88 mg), Caffeine (as caffeine anhydrous, dicaffeine malate), Vinpocetine , Bioperine Black Pepper extract (fruit). Other Ingredients: Silicon Dioxide, Magnesium Stearate, Dicalcium Phosphate, Stearic Acid, Gelatin.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product NaturalTrim 3X. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of evodia.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product NaturalTrim 3X. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Black pepper has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when black pepper oil is applied topically. Black pepper oil is nonirritating to the skin and is generally well tolerated (11). ...when black pepper oil is inhaled through the nose or as a vapor through the mouth, short-term. Black pepper oil as a vapor or as an olfactory stimulant has been used with apparent safety in clinical studies for up to 3 days and 30 days, respectively (29159,29160,29161,90502). There is insufficient reliable information available about the safety of black pepper when used orally in medicinal amounts.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
CHILDREN: POSSIBLY UNSAFE
when used orally in large amounts.
Fatal cases of pepper aspiration have been reported in some patients (5619,5620). There is insufficient reliable information available about the safety of topical pepper oil when used in children.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
PREGNANCY: LIKELY UNSAFE
when used orally in large amounts.
Black pepper might have abortifacient effects (11,19); contraindicated. There is insufficient reliable information available about the safety of topical pepper when used during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
There is insufficient reliable information available about the safety of black pepper when used in medicinal amounts during breast-feeding.
LIKELY SAFE ...when used orally, parenterally, or rectally and appropriately. Caffeine has Generally Recognized As Safe (GRAS) status in the US (4912,98806). Caffeine is also an FDA-approved product and a component of several over-the-counter and prescription products (4912,11832). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, doses of caffeine up to 400 mg daily are not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806). This amount of caffeine is similar to the amount of caffeine found in approximately 4 cups of coffee. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
POSSIBLY UNSAFE ...when used orally, long-term or in high doses (91063). Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other adverse effects (3719). Acute use of high doses, typically above 400 mg daily, has been associated with significant adverse effects such as tachyarrhythmia and sleep disturbances (11832). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
LIKELY UNSAFE ...when used orally in very high doses. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg/kg). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, or prior caffeine use (11832,95700,97454,104573). Caffeine products sold to consumers in highly concentrated or pure formulations are considered to a serious health concern because these products have a risk of being used in very high doses. Concentrated liquid caffeine can contain about 2 grams of caffeine in a half cup. Powdered pure caffeine can contain about 3.2 grams of caffeine in one teaspoon. Powdered pure caffeine can be fatal in adults when used in doses of 2 tablespoons or less. As of 2018, these products are considered by the FDA to be unlawful when sold to consumers in bulk quantities (95700).
CHILDREN: POSSIBLY SAFE
when used orally or intravenously and appropriately in neonates under the guidance of a healthcare professional (6371,38340,38344,91084,91087,97452).
...when used orally in amounts commonly found in foods and beverages in children and adolescents (4912,11833,36555). Daily intake of caffeine in doses of less than 2.5 mg/kg daily are not associated with significant adverse effects in children and adolescents (11733,98806). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY SAFE
when used orally in amounts commonly found in foods.
Intakes of caffeine should be monitored during pregnancy. Caffeine crosses the human placenta, but is not considered a teratogen (38048,38252,91032). Fetal blood and tissue levels are similar to maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,16014,16015,98806,108814). In some studies consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014,37960). This increased risk seems to occur in those with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, up to 300 mg daily can be consumed during pregnancy without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). However, observational research in a Norwegian cohort found that caffeine consumption is associated with a 16% increased odds of the baby being born small for gestational age when compared with no consumption (100369,103707). The same Norwegian cohort found that low to moderate caffeine consumption during pregnancy is not associated with changes in neurodevelopment in children up to 8 years of age (103699). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee or tea.
PREGNANCY: POSSIBLY UNSAFE
when used orally in amounts over 300 mg daily.
Caffeine crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260,98806). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee or tea. Additionally, high doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711,91033,91048,95949). In a cohort of mother/infant pairs with a median maternal plasma caffeine level of 168.5 ng/mL (range 29.5-650.5 ng/mL) during pregnancy, birth weights and lengths were lower in the 4th quartile of caffeine intake compared with the 1st. By age 7, heights and weights were lower by 1.5 cm and 1.1 kg respectively. In another cohort of mother/infant pairs with higher maternal pregnancy plasma caffeine levels, median 625.5 ng/mL (range 86.2 to 1994.7 ng/mL), heights at age 8 were 2.2 cm lower, but there was no difference in weights (109846).
LACTATION: POSSIBLY SAFE
when used orally in amounts commonly found in foods.
Caffeine intake should be closely monitored while breast-feeding. During lactation, breast milk concentrations of caffeine are thought to be approximately 50% of serum concentrations and caffeine peaks in breastmilk approximately 1-2 hours after consumption (23590).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Caffeine is excreted slowly in infants and may accumulate. Caffeine can cause sleep disturbances, irritability, and increased bowel activity in breast-fed infants exposed to caffeine (2708,6026).
LIKELY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Chromium has been safely used in doses up to 1000 mcg daily for up to 6 months (1934,5039,5040,6858,6859,6860,6861,6862,6867,6868)(7135,7137,10309,13053,14325,14440,17224,90057,90061)(90063,94234,95095,95096,95097,98687); however, most of these studies have used chromium doses in a range of 150-600 mcg. The Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, long-term. Chromium has been safely used in a small number of studies at doses of 200-1000 mcg daily for up to 2 years (7060,7135,42618,42628,42666,110605,110607,110609). However, the Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
CHILDREN: LIKELY SAFE
when used orally and appropriately in amounts not exceeding the daily adequate intake (AI) levels by age: 0-6 months, 0.
2 mcg; 7-12 months, 5.5 mcg; 1-3 years, 11 mcg; 4-8 years, 15 mcg; males 9-13 years, 25 mcg; males 14-18 years, 35 mcg; females 9-13 years, 21 mcg; females 14-18 years, 24 mcg (7135). POSSIBLY SAFE...when used orally and appropriately in amounts exceeding AI levels. Chromium 400 mcg daily has been used safely for up to 6 weeks (42680).
PREGNANCY: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for pregnancy is 28 mcg daily for those 14-18 years of age and 30 mcg daily for those 19-50 years of age (7135).
PREGNANCY: POSSIBLY SAFE
when used orally in amounts exceeding the adequate intake (AI) levels.
There is some evidence that patients with gestational diabetes can safely use chromium in doses of 4-8 mcg/kg (1953); however, patients should not take chromium supplements during pregnancy without medical supervision.
LACTATION: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for lactation is 44 mcg daily for those 14-18 years of age and 45 mcg daily for those 19-50 years of age (7135). Chromium supplements do not seem to increase normal chromium concentration in human breast milk (1937). There is insufficient reliable information available about the safety of chromium when used in higher amounts while breast-feeding.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Most studies have been small and lasted from a few weeks to 6 months, with usual doses of 50 mg daily (793,1635,2133,3231,4249,4251,4252,4253,4254,4255,9691)(9692,10986,12215,12564,14277,21416,88726,90304,99925). Some studies have also used oral DHEA with apparent safety for 12-24 months (2113,6446,10406,11464,12561,15027,88492). ...when used intravaginally and appropriately. Intravaginal ovules of DHEA 3.25 mg to 13 mg have been safely used for up to 12 weeks (21320,21429,21430). ...when used topically and appropriately. A DHEA cream 1% to 10% has been safely used for up to 12 months (4242,21428).
POSSIBLY UNSAFE ...when used orally in high doses or long-term. There is concern that long-term use or use of amounts that cause higher than normal physiological DHEA levels might increase the risk of prostate cancer (2111,12565), breast cancer (10370,10401,10403), or other hormone-sensitive cancers (6445). In some cases, 50-100 mg daily can produce slightly higher than normal physiological DHEA levels (4249,4251). There is insufficient reliable information available about the safety of using DHEA intravenously or intramuscularly.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally.
DHEA can cause higher than normal androgen levels (2133,4249,4251,4253), which might adversely affect pregnancy or a nursing infant.
There is insufficient reliable information available about the safety of evodia when used orally. In animal studies, evodia has induced QT interval prolongation and Torsade de pointes (97035). It is not clear what dose, if any, is required to produce a similar effect in humans.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Active constituents in evodia have uterine stimulant activity in animal models. Evodia might also decrease litter size in animal models (15229). Theoretically, taking evodia during pregnancy might adversely affect pregnancy outcome.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. There is some clinical research showing that taking rhodiola extract up to 300 mg twice daily has been used without adverse effects for up to 12 weeks (13109,16410,17616,71172,96459,102283,103269).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately for up to 12 months (1784,1788,82041,82074,82089,82091,82120,82121,82151,82152)(82153,82154,82179,82180,82182,82183,104522,106845,110744). ...when used intravenously and appropriately, short-term (82074,82099,82147,82158,82159,82186,110744).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
In June 2019, the US Food and Drug Administration (FDA) issued a statement of warning that those who are pregnant or who could become pregnant should avoid vinpocetine (95751). In rats, vinpocetine has been associated with an increased risk of miscarriage at a dose of 60 mg/kg daily and with reduced fetal weight and increased incidence of birth defects at a dose of 5-20 mg/kg. Based on pharmacokinetic analyses, a daily vinpocetine dose of 10 mg in humans is comparable to a daily dose of 5 mg/kg in rats (99701).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY UNSAFE ...when used orally. Yohimbine, a constituent of yohimbe, has been associated with serious adverse effects including cardiac arrhythmia, agitation, myocardial infarction, seizure, and others (17465). Some research shows that yohimbine can be safely used under close medical supervision for up to 10 weeks (3305,3307,3311,3313). However, due to safety concerns, yohimbe should not be used without medical supervision.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally.
Yohimbe might have uterine relaxant effects and also cause fetal toxicity (19).
Below is general information about the interactions of the known ingredients contained in the product NaturalTrim 3X. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, black pepper might increase the effects and side effects of amoxicillin.
Details
Animal research shows that taking piperine, a constituent of black pepper, with amoxicillin increases plasma levels of amoxicillin (29269). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of bleeding when taken with antiplatelet or anticoagulant drugs.
Details
In vitro research shows that piperine, a constituent of black pepper, seems to inhibit platelet aggregation (29206). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
Animal research shows that piperine, a constituent of black pepper, can reduce blood glucose levels (29225). Monitor blood glucose levels closely. Dose adjustments might be necessary.
|
Theoretically, black pepper might increase blood levels of atorvastatin.
Details
Animal research shows that taking piperine, a constituent of black pepper, 35 mg/kg can increase the maximum serum concentration of atorvastatin three-fold (104188). This has not been reported in humans.
|
Theoretically, black pepper might increase blood levels of carbamazepine, potentially increasing the effects and side effects of carbamazepine.
Details
One clinical study in patients taking carbamazepine 300 mg or 500 mg twice daily shows that taking a single 20 mg dose of purified piperine, a constituent of black pepper, increases carbamazepine levels. Piperine may increase carbamazepine absorption by increasing blood flow to the GI tract, increasing the surface area of the small intestine, or inhibiting cytochrome P450 3A4 (CYP3A4) in the gut wall. Absorption was significantly increased by 7-10 mcg/mL/hour. The time to eliminate carbamazepine was also increased by 4-8 hours. Although carbamazepine levels were increased, this did not appear to increase side effects (16833). In vitro research also shows that piperine can increase carbamazepine levels by 11% in a time-dependent manner (103819).
|
Theoretically, black pepper might increase the effects and side effects of cyclosporine.
Details
In vitro research shows that piperine, a constituent of black pepper, increases the bioavailability of cyclosporine (29282). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP1A1.
Details
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP1A1 (29213). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2B1.
Details
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP2B1 (29332). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2D6.
Details
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP3A4.
Details
|
Theoretically, black pepper might increase blood levels of lithium due to its diuretic effects. The dose of lithium might need to be reduced.
Details
Black pepper is thought to have diuretic properties (11).
|
Black pepper might increase blood levels of nevirapine.
Details
Clinical research shows that piperine, a constituent of black pepper, increases the plasma concentration of nevirapine. However, no adverse effects were observed in this study (29209).
|
Theoretically, black pepper might increase levels of P-glycoprotein substrates.
Details
|
Theoretically, black pepper might increase the sedative effects of pentobarbital.
Details
Animal research shows that piperine, a constituent of black pepper, increases pentobarbital-induced sleeping time (29214).
|
Black pepper might increase blood levels of phenytoin.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption, slow elimination, and increase levels of phenytoin (537,14442). Taking a single dose of black pepper 1 gram along with phenytoin seems to double the serum concentration of phenytoin (14375). Consuming a soup with black pepper providing piperine 44 mg/200 mL of soup along with phenytoin also seems to increase phenytoin levels when compared with consuming the same soup without black pepper (14442).
|
Black pepper might increase blood levels of propranolol.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of propranolol (538).
|
Black pepper might increase blood levels of rifampin.
Details
|
Black pepper might increase blood levels of theophylline.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of theophylline (538).
|
Theoretically, caffeine might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Details
Some evidence shows that caffeine is a competitive inhibitor of adenosine and can reduce the vasodilatory effects of adenosine in humans (38172). However, other research shows that caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, concomitant use might increase levels and adverse effects of caffeine.
Details
Alcohol reduces caffeine metabolism. Concomitant use of alcohol can increase caffeine serum concentrations and the risk of caffeine adverse effects (6370).
|
Theoretically, caffeine may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, taking caffeine with antidiabetes drugs might interfere with blood glucose control.
Details
|
Theoretically, large amounts of caffeine might increase the cardiac inotropic effects of beta-agonists (15).
|
Theoretically, caffeine might reduce the effects of carbamazepine and increase the risk for convulsions.
Details
Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, cimetidine might increase the levels and adverse effects of caffeine.
Details
Cimetidine decreases the rate of caffeine clearance by 31% to 42% (11736).
|
Caffeine might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Details
Caffeine might increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg per day inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Although researchers speculate that caffeine might inhibit CYP1A2, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients more sensitive to an interaction between clozapine and caffeine (13741). In one case report, severe, life-threatening clozapine toxicity and multiorgan system failure occurred in a patient with schizophrenia stabilized on clozapine who consumed caffeine 600 mg daily (108817).
|
Theoretically, contraceptive drugs might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, caffeine might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Details
Caffeine inhibits dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram use might increase the levels and adverse effects of caffeine.
Details
Disulfiram decreases the rate of caffeine clearance (11840).
|
Theoretically, using caffeine with diuretic drugs might increase the risk of hypokalemia.
Details
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
Details
Use of ephedrine with caffeine can increase the risk of stimulatory adverse effects. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,10307).
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, caffeine might reduce the effects of ethosuximide and increase the risk for convulsions.
Details
Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, caffeine might reduce the effects of felbamate and increase the risk for convulsions.
Details
Animal research suggests that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Details
Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, caffeine might increase the levels and adverse effects of flutamide.
Details
In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). However, this effect has not been reported in humans.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Details
Fluvoxamine reduces caffeine metabolism (6370).
|
Theoretically, abrupt caffeine withdrawal might increase the levels and adverse effects of lithium.
Details
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Details
Animal research suggests that metformin can reduce caffeine metabolism (23571). However, this effect has not been reported in humans.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Details
Methoxsalen reduces caffeine metabolism (23572).
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Details
Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Details
Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, caffeine might decrease the effects of pentobarbital.
Details
Caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, caffeine might reduce the effects of phenobarbital and increase the risk for convulsions.
Details
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
Details
|
Theoretically, caffeine might reduce the effects of phenytoin and increase the risk for convulsions.
Details
|
Theoretically, caffeine might increase the levels and clinical effects of pioglitazone.
Details
Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Details
Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce the metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Details
Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Details
Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, caffeine might increase the levels and adverse effects of theophylline.
Details
Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, caffeine might increase the levels and adverse effects of tiagabine.
Details
Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Details
In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, caffeine might reduce the effects of valproate and increase the risk for convulsions.
Details
|
Theoretically, verapamil might increase the levels and adverse effects of caffeine.
Details
Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, chromium may have additive effects with antidiabetic agents and increase the risk of hypoglycemia.
Details
|
Theoretically, aspirin might increase chromium absorption.
Details
Animal research suggests that aspirin may increase chromium absorption and chromium levels in the blood (21055).
|
Theoretically, concomitant use of chromium and insulin might increase the risk of hypoglycemia.
Details
|
Chromium might bind levothyroxine in the intestinal tract and decrease levothyroxine absorption.
Details
Clinical research in healthy volunteers shows that taking chromium picolinate 1000 mcg with levothyroxine 1 mg decreases serum levels of levothyroxine by 17% when compared to taking levothyroxine alone (16012). Advise patients to take levothyroxine at least 30 minutes before or 3-4 hours after taking chromium.
|
NSAIDs might increase chromium levels in the body.
Details
Drugs that are prostaglandin inhibitors, such as NSAIDs, seem to increase chromium absorption and retention (7135).
|
Theoretically, DHEA might increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, DHEA might increase the risk of psychiatric adverse events when used with antidepressants.
Details
In a human case report, the use of a selective serotonin reuptake inhibitor (SSRI) with DHEA caused a manic episode (7023). Concern for this interaction may be greater in younger individuals with higher baseline DHEA levels.
|
Theoretically, DHEA might interfere with the clinical effects of aromatase inhibitors.
Details
DHEA is a potent estrogen agonist, which may antagonize the anti-estrogen activity of aromatase inhibitors (10401).
|
Theoretically, DHEA might increase the levels of drugs metabolized by CYP3A4.
Details
Some preliminary evidence shows that DHEA may inhibit CYP3A4 (1389); however, the clinical significance of this potential interaction is not known.
|
Theoretically, DHEA might increase the effects and adverse effects of estrogen therapy.
Details
DHEA is a precursor to estrogen and androgen and is metabolized into those substances. In clinical research, DHEA supplements increase the levels of these hormones (6012,7614,8593,10986,12651,12564,15027,21321,21323,21324)(21325,21326,21327,21328,21330,21331,21356,21364,21389,21393)(21397,21398,21417,21419,21427,47273,47348,88375,90304). Also, in clinical research, estrogen-progestin oral contraceptives and conjugated estrogens reduce blood levels of DHEA and DHEA-S (21372,21373,21374,21437,21438). The clinical significance of these findings is unclear.
|
Theoretically, DHEA might interfere with the anti-estrogen effects of fulvestrant.
Details
|
Theoretically, DHEA might interfere with the anti-estrogen effects of tamoxifen.
Details
|
Theoretically, DHEA might increase the effects and side effects of testosterone therapy.
Details
DHEA is a precursor to estrogen and androgen and is metabolized into those substances. In clinical research, DHEA supplements increase the levels of these hormones (6012,7614,8593,10986,12651,12564,15027,21321,21323,21324)(21325,21326,21327,21328,21330,21331,21356,21364,21389,21393)(21397,21398,21417,21419,21427,47273,47348,88375,90304,99924,99925,104162). The clinical significance of these findings is unclear.
|
DHEA can increase blood levels of triazolam.
Details
Administration of DHEA 200 mg daily for two weeks was shown to inhibit the cytochrome P450 3A4 (CYP3A4) metabolism of triazolam. This inhibition appears to be due to DHEA-S, rather than DHEA (1389).
|
DHEA might reduce the effectiveness of the tuberculosis vaccine.
Details
Animal research shows that high doses of DHEA can reduce the efficacy of the Bacillus Calmette-Guérin (BCG) tuberculosis vaccine (21316).
|
Theoretically, taking evodia with antiplatelet or anticoagulant drugs might increase the risk of bruising and bleeding.
Details
|
Theoretically, evodia might decrease the levels and clinical effects of caffeine.
Details
In animal models, evodia extract decreases caffeine levels by up to 71%. Evodia extract induces hepatic cytochrome P450 1A2 (CYP1A2) enzyme, of which caffeine is a substrate (15241).
|
Theoretically, evodia might decrease the levels and clinical effects of chlorzoxazone.
Details
Animal research shows that administration of rutaecarpine, a constituent of evodia, with chlorzoxazone reduces the area under the curve (AUC) of chlorzoxazone by 84% and increases its clearance by 646%. This interaction is likely due to induction of cytochrome P450 2E1 (CYP2E1) by rutaecarpine (107913).
|
Theoretically, drugs that inhibit CYP1A2 might increase the levels and clinical effects of evodia.
Details
The evodia constituent rutaecarpine is metabolized by CYP1A2 (15253).
|
Evodia might reduce the levels and clinical effects of CYP1A2 substrates through induction of CYP1A2.
Details
|
Theoretically, evodia might reduce the levels and clinical effects of CYP2E1 substrates through induction of CYP2E1.
Details
Animal research suggests that rutaecarpine, a constituent of evodia, induces CYP2E1 activity. In rats, rutaecarpine increases markers of CYP2E1 activity, and administration of rutaecarpine with chlorzoxazone, a known CYP2E1 substrate, reduces the area under the curve (AUC) of chlorzoxazone by 84% and increases its clearance by 646% (107913).
|
Theoretically, taking CYP3A4 inducers might decrease the levels and clinical effects of evodia.
Details
Animal research shows that concomitant administration of dexamethasone, a known CYP3A4 inducer, with the alkaloid constituents of evodia significantly reduces the area under the curve (AUC), maximum concentration (Cmax), and half-life of these constituents (107911).
|
Theoretically, CYP3A4 inhibitors might increase the levels and clinical effects of evodia.
Details
Animal research shows that concomitant administration of ketoconazole, a known CYP3A4 inhibitor, with the alkaloid constituents of evodia significantly increases the area under the curve (AUC), maximum concentration (Cmax), and half-life of these constituents (107911).
|
Theoretically, evodia might increase the levels and clinical effects of CYP3A4 substrates.
Details
In vitro research shows that evodia extract inhibits hepatic CYP3A4 (15236). This effect has not been reported in humans.
|
Theoretically, evodia might have an additive effect with drugs that prolong the QT interval, potentially increasing the risk of ventricular arrhythmias.
Details
Evodia has demonstrated dose-dependent activity as a proarrhythmic agent in animal and in vitro studies. Evodia infusion in animals extends the action duration potential and induces prolongation of the QT interval and Torsade de pointes (97035).
|
Theoretically, evodia might decrease the levels and clinical effects of theophylline.
Details
The evodia constituent rutaecarpine decreases theophylline levels and half-life by about 70% in animal models (15227). This constituent appears to induce hepatic cytochrome P450 1A2 (CYP1A2) enzyme activity, of which theophylline is a substrate (15227,15230). Rutaecarpine is the primary active constituent of evodia; however, it is not known if the whole crude extract of evodia also causes this interaction.
|
Theoretically, taking rhodiola with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking rhodiola with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, rhodiola might increase levels of drugs metabolized by CYP1A2.
Details
In vitro research shows that rhodiola inhibits CYP1A2. This effect is highly variable and appears to be dependent on the rhodiola product studied (96461). However, a clinical study in healthy young males found that taking rhodiola extract 290 mg daily for 14 days does not inhibit the metabolism of caffeine, a CYP1A2 substrate (96463).
|
Theoretically, rhodiola might increase levels of drugs metabolized by CYP2C9.
Details
In vitro research shows that rhodiola inhibits CYP2C9. This effect is highly variable and appears to be dependent on the rhodiola product studied (96461). Also, a clinical study in healthy young males found that taking rhodiola extract 290 mg daily for 14 days reduces the metabolism of losartan, a CYP2C9 substrate, by 21% after 4 hours (96463).
|
Theoretically, rhodiola might increase levels of drugs metabolized by CYP3A4.
Details
In vitro research shows that rhodiola inhibits CYP3A4 (19497,96461). This effect is highly variable and appears to be dependent on the rhodiola product studied (96461). However, a clinical study in healthy young males found that taking rhodiola extract 290 mg daily for 14 days does not inhibit the metabolism of midazolam, a CYP3A4 substrate (96463).
|
Theoretically, rhodiola use might interfere with immunosuppressive therapy.
Details
|
Rhodiola might increase the levels and adverse effects of losartan.
Details
A clinical study in healthy young males found that taking rhodiola extract 290 mg daily for 14 days reduces the metabolism of losartan, a CYP2C9 substrate, by 21% after 4 hours (96463).
|
Theoretically, rhodiola might increase levels of P-glycoprotein substrates.
Details
In vitro research shows that rhodiola inhibits P-glycoprotein (19497). Theoretically, using rhodiola with P-glycoprotein substrates might increase drug levels and potentially increase the risk of adverse effects.
|
Vinpocetine might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Details
Clinical research shows that vinpocetine decreases red blood cell aggregation, as well as plasma and whole blood viscosity. This effect has been seen with intravenous vinpocetine 1 mg/kg and oral vinpocetine 30 mg daily (82101,82119). Vinpocetine also seems to have antiplatelet effects (1801,10061,82117).
|
Theoretically, vinpocetine might increase levels of drugs metabolized by CYP2C9.
Details
In vitro research shows that vinpocetine weakly inhibits CYP2C9 (92933). However, this effect has not been reported in humans.
|
Vinpocetine might modestly increase the risk of bleeding when taken with warfarin.
Details
Clinical research shows that the combination of warfarin and vinpocetine leads to slight increases in prothrombin time and the area under the concentration curve for warfarin. However, these increases were small, and researchers suggest that this interaction is not likely to be clinically significant in most patients (10829).
|
Theoretically, combining yohimbe bark with antiplatelet or anticoagulant drugs might have additive effects; however, this has not been reported in clinical research.
Details
Research in healthy adults shows that taking yohimbine, a constituent of yohimbe bark, in doses of 8 mg or more, seems to inhibit platelet aggregation in vitro by binding to the alpha-2 adrenoceptor (86773,86806,86835,86853). The effects of yohimbe bark itself are unclear; yohimbe bark contains 0.6% to 1.38% yohimbine, but it is unclear how much is absorbed (86862,89263).
|
Theoretically, yohimbe might reduce the effects of antihypertensive drugs.
Details
|
Theoretically, yohimbe might precipitate clonidine withdrawal.
Details
Chronic clonidine use can downregulate alpha-2 adrenoreceptors. Animal research and one human case report suggest that concomitant administration of yohimbine, an alpha-2 adrenoceptor antagonist, may precipitate clonidine withdrawal and lead to sympathomimetic toxicity, including hypertensive crisis (111406).
|
Theoretically, yohimbe might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research shows that yohimbe extract induces CYP1A2 enzymes (111404).
|
CYP2D6 inhibitors may increase the levels and adverse effects of yohimbine, a constituent of yohimbe.
Details
In vitro and clinical research shows that the yohimbe bark constituent, yohimbine, is metabolized by CYP2D6 isoenzymes (105688,105697,105698). Paroxetine, a cytochrome P450 (CYP) 2D6 inhibitor, increases the maximum serum concentration of yohimbine and reduces the clearance of yohimbine compared to yohimbine alone in patients who are extensive CYP2D6 metabolizers. (114932).
|
Theoretically, yohimbe might increase the levels and adverse effects of CYP2D6 substrates.
Details
In vitro research suggests that yohimbine, a constituent of yohimbe bark, inhibits CYP2D6 enzyme activity (23117).
|
Theoretically, CYP3A4 inhibitors might increase the levels and adverse effects of yohimbine, a constituent of yohimbe bark.
Details
|
Theoretically, yohimbe might decrease the levels and clinical effects of CYP3A4 substrates.
Details
In vitro research shows that yohimbe extract induces CYP3A4 enzymes (111404).
|
Concomitant use of MAOIs with yohimbe can result in additive effects.
Details
|
Paroxetine decreases the clearance of yohimbine and may increase its effects.
Details
Paroxetine, a cytochrome P450 (CYP) 2D6 inhibitor, increases the maximum serum concentration of yohimbine by about 350% and reduces the clearance of yohimbine by about 80% compared to yohimbine alone in patients who are extensive CYP2D6 metabolizers. No significant changes in pharmacokinetic parameters of yohimbine were observed with coadministration of paroxetine in patients who are poor CYP2D6 metabolizers (114932).
|
Theoretically, using yohimbine with phenothiazines might have additive effects.
Details
Yohimbine, a constituent of yohimbe, has alpha-2 adrenergic antagonist effects. Theoretically, combining it with phenothiazines can cause additive alpha-2 adrenergic antagonism (19).
|
Theoretically, taking yohimbe with stimulant drugs can have additive effects.
Details
|
Theoretically, taking yohimbe with TCAs can increase adverse effects.
Details
A small clinical study in patients taking TCAs for at least 4 weeks shows that receiving doses of intravenous yohimbine 2.5-20 mg daily for up to 7 days precipitates severe anxiety, agitation, and tremor (105881). The effects of yohimbe bark itself are unclear; oral yohimbe bark contains 0.6% to 1.38% yohimbine, but it is unclear how much is absorbed (86862,89263).
|
Below is general information about the adverse effects of the known ingredients contained in the product NaturalTrim 3X. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, black pepper seems to be well tolerated when used in the amounts found in food or when taken as a medicine as a single dose.
Topically and as aromatherapy, black pepper oil seems to be well tolerated.
Most Common Adverse Effects:
Orally: Burning aftertaste, dyspepsia, and reduced taste perception.
Inhalation: Cough.
Serious Adverse Effects (Rare):
Orally: Allergic reaction in sensitive individuals.
Gastrointestinal ...Orally, black pepper can cause a burning aftertaste (5619) and dyspepsia (38061). Single and repeated application of piperine, the active constituent in black pepper, to the tongue and oral cavity can decrease taste perception (29267). By intragastric route, black pepper 1.5 grams has been reported to cause gastrointestinal microbleeds (29164). It is not clear if such an effect would occur with oral administration.
Immunologic ...In one case report, a 17-month-old male developed hives, red eyes, facial swelling, and a severe cough following consumption of a sauce containing multiple ingredients. Allergen skin tests were positive to both black pepper and cayenne, which were found in the sauce (93947).
Ocular/Otic ...Topically, ground black pepper can cause redness of the eyes and swelling of the eyelids (5619).
Pulmonary/Respiratory ...When inhaled through the nose as an olfactory stimulant, black pepper oil has been reported to cause cough in one clinical trial (29162).
General
...Caffeine in moderate doses is typically well tolerated.
Most Common Adverse Effects:
Orally: Anxiety, dependence with chronic use, diarrhea, diuresis, gastric irritation, headache, insomnia, muscular tremors, nausea, and restlessness.
Serious Adverse Effects (Rare):
Orally: Stroke has been reported rarely.
Cardiovascular
...Caffeine can temporarily increase blood pressure.
Usually, blood pressure increases 30 minutes after ingestion, peaks in 1-2 hours, and remains elevated for over 4 hours (36539,37732,37989,38000,38300).
Although acute administration of caffeine can cause increased blood pressure, regular consumption does not seem to increase either blood pressure or pulse, even in mildly hypertensive patients (1451,1452,2722,38335). However, the form of caffeine may play a role in blood pressure increase after a more sustained caffeine use. In a pooled analysis of clinical trials, coffee intake was not associated with an increase in blood pressure, while ingesting caffeine 410 mg daily for at least 7 days modestly increased blood pressure by an average of 4.16/2.41 mmHg (37657). Another meta-analysis of clinical research shows that taking caffeine increases systolic and diastolic blood pressure by approximately 2 mmHg when compared with control. Preliminary subgroup analyses suggest that caffeine may increase blood pressure more in males or at doses over 400 mg (112738).
When used prior to intensive exercise, caffeine can increase systolic blood pressure by 7-8 mmHg (38308). The blood pressure-raising effects of caffeine are greater during stress (36479,38334) and after caffeine-abstinence of at least 24 hours (38241).
Epidemiological research suggests there is no association of caffeine consumption with incidence of hypertension (38190). Habitual coffee consumption also doesn't seem to be related to hypertension, but habitual consumption of sugared or diet cola is associated with development of hypertension (13739).
Epidemiological research has found that regular caffeine intake of up to 400 mg daily is not associated with increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453,103708), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806). One clinical trial shows that in adults with diagnosed heart failure, consumption of 500 mg of coffee does not result in an increased risk for arrhythmia during exercise (95950). However, caffeine intake may pose a greater cardiovascular risk to subjects that are not regular users of caffeine. For example, in one population study, caffeinated coffee consumption was associated with an increased risk of ischemic stroke in subjects that don't regularly drink coffee (38102). In a population study in Japanese subjects, caffeine-containing medication use was modestly associated with hemorrhagic stroke in adults that do not consume caffeine regularly (91059).
The most common side effect of caffeine in neonates receiving caffeine for apnea is tachycardia (98807).
Dermatologic ...There are several case reports of urticaria after caffeine ingestion (36546,36448,36475).
Endocrine
...Some evidence shows caffeine is associated with fibrocystic breast disease or breast cancer in females; however, this is controversial since findings are conflicting (8043,108806).
Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Clinical research in healthy adults shows that an increase consumption of caffeine results in increased insulin resistance (91023).
Gastrointestinal ...Gastrointestinal upset, nausea, diarrhea, abdominal pain, and fecal incontinence may occur with caffeine intake (36466,37755,37806,37789,37830,38138,38136,38223,95956,95963). Also, caffeine may cause feeding intolerance and gastrointestinal irritation in infants (6023). Perioperative caffeine during cardiopulmonary bypass surgery seems to increase the rate of postoperative nausea and vomiting (97451). Caffeine and coffee consumption have been associated with an increase in the incidence of heartburn (37545,37575,38251,38259,38267) and gastrointestinal esophageal reflux disease (GERD) (38329,37633,37631,37603).
Genitourinary ...Caffeine, a known diuretic, may increase voiding, give a sense of urgency, and irritate the bladder (37874,37961,104580). In men with lower urinary tract symptoms, caffeine intake increased the risk of interstitial cystitis/painful bladder syndrome (38115). Excessive caffeine consumption may worsen premenstrual syndrome. Consumption of up to 10 cups of caffeinated drinks daily was associated with increased severity of premenstrual syndrome (38177). Finally, population research shows that exposure to caffeine was not associated with an increased risk of endometriosis (91035).
Immunologic ...Caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Caffeine can induce or exacerbate muscular tremors (38136,37673,38161).
There has also been a report of severe rhabdomyolysis in a healthy 40-year-old patient who consumed an energy drink containing 400 mg of caffeine (4 mg/kg) and then participated in strenuous weightlifting exercise (108818).
Epidemiological evidence regarding the relationship between caffeine use and the risk for osteoporosis is contradictory. Caffeine can release calcium from storage sites and increase its urinary excretion (2669,10202,11317,111489). Females with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake, less than 300 mg daily, does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317). Premature infants treated with intravenous caffeine for apnea of prematurity, have a lower bone mineral content compared with infants who are not treated with caffeine, especially when treatment extends beyond 14 days (111489).
Neurologic/CNS ...Caffeine can cause headaches, anxiety, jitteriness, restlessness, and nervousness (36466,37694,37755,37806,37865,37830,37889,38223,95952). In adolescents, there is an inverse correlation between the consumption of caffeine and various measurements of cognitive function (104579). Insomnia is a frequent adverse effect in children (10755). Caffeine may result in insomnia and sleep disturbances in adults as well (36445,36483,36512,36531,37598,37795,37819,37862,37864,37890)(37968,37971,38091,38242,91022,92952). Additionally, caffeine may exacerbate sleep disturbances in patients with acquired immunodeficiency syndrome (AIDS) (10204). Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, temporary loss of consciousness, and hospitalization requiring life support has been associated with the combined use of ephedra and caffeine (2729). Finally, epidemiological research suggests that consuming more than 190 mg of caffeine daily is associated with an earlier onset of Huntington disease by 3.6 years (91078).
Ocular/Otic
...In individuals with glaucoma, coffee consumption and caffeine intake has been found to increase intraocular pressure (8540,36464,36465,37670).
The magnitude of this effect seems to depend on individual tolerance to caffeine. Some research in healthy young adults shows that caffeine increases intraocular pressure to a greater degree in low-consumers of caffeine (i.e., 1 cup of coffee or less daily) when compared to high-consumers (i.e., those consuming 2 cups of coffee or more daily) (100371). The peak increase of intraocular pressure seems to occur at about 1.5 hours after caffeine ingestion, and there is no notable effect 4 hours after ingestion (36462,100371).
Oncologic ...Most human studies which have examined caffeine or methylxanthine intake have found that they do not play a role in the development of various cancers, including breast, ovarian, brain, colon, rectal, or bladder cancer (37641,37737,37775,37900,38050,38169,38220,91054,91076,108806).
Psychiatric
...Caffeine may lead to habituation and physical dependence (36355,36453,36512,36599), with amounts as low as 100 mg daily (36355,36453).
An estimated 9% to 30% of caffeine consumers could be considered addicted to caffeine (36355). Higher doses of caffeine have caused nervousness, agitation, anxiety, irritability, delirium, depression, sleep disturbances, impaired attention, manic behavior, psychosis and panic attacks (36505,37717,37818,37839,37857,37982,38004,38017,38028,38072)(38079,38138,38306,38325,38331,38332,97464). Similar symptoms have been reported in a caffeine-naïve individual experiencing fatigue and dehydration after a dose of only 200 mg, with resolution of symptoms occurring within 2 hours (95952).
Withdrawal: The existence or clinical importance of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Headache is the most common symptom, due to cerebral vasodilation and increased blood flow (37769,37991,37998). Other researchers suggest symptoms such as tiredness and fatigue, decreased energy, alertness and attentiveness, drowsiness, decreased contentedness, depressed mood, difficulty concentration, irritability, and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms typically occur 12-24 hours after the last dose of caffeine and peak around 48 hours (37769,36600). Symptoms may persist for 2-9 days. Withdrawal symptoms such as delirium, nausea, vomiting, rhinorrhea, nervousness, restlessness, anxiety, muscle tension, muscle pains, and flushed face have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839). In a case report, caffeine consumption of 560 mg daily was associated with increased suicidality (91082).
Renal ...Data on the relationship between caffeine intake and kidney stones are conflicting. Some clinical research shows that caffeine consumption may increase the risk of stone formation (37634,111498), while other research shows a reduced risk with increasing caffeine intakes (111498). A meta-analysis of 7 studies found that overall, there is an inverse relationship, with a 32% decrease in the risk of kidney stones between the lowest and highest daily intakes of caffeine (111498).
Other ...People with voice disorders, singers, and other voice professionals are often advised against the use of caffeine; however, this recommendation has been based on anecdotal evidence. One small exploratory study suggests that caffeine ingestion may adversely affect subjective voice quality, although there appears to be significant intra-individual variability. Further study is necessary to confirm these preliminary findings (2724).
General
...Orally, chromium is generally well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal irritation, headaches, insomnia, irritability, mood changes.
Serious Adverse Effects (Rare):
Orally: Rare cases of kidney and liver damage, rhabdomyolysis, and thrombocytopenia have been reported.
Dermatologic
...Orally, chromium-containing supplements may cause acute generalized exanthematous pustulosis (42561), skin rashes (42679), and urticaria (17224).
Also, chromium picolinate or chromium chloride may cause systemic contact dermatitis when taken orally, especially in patients with contact allergy to chromium (6624,90058). In one clinical study, a patient taking chromium nicotinate 50 mcg daily reported itchy palms that improved after the intervention was discontinued. It is unclear of this effect was due to the chromium or another factor (95096).
Topically, hexavalent chromium, which can be present in some cement, leather products, or contaminated soil, may cause allergic contact dermatitis (42645,42789,90060,90064,110606).
A case of lichen planus has been reported for a patient following long-term occupational exposure to chromium (42688).
Endocrine ...Orally, cases of hypoglycemia have been reported for patients taking chromium picolinate 200-1000 mcg daily alone or 200-300 mcg two or three times weekly in combination with insulin (42672,42783). Chromium picolinate has also been associated with weight gain in young females who do not exercise and in those following a weight-lifting program (1938).
Gastrointestinal
...Orally, chromium in the form of chromium picolinate, chromium polynicotinate, chromium-containing brewer's yeast, or chromium-containing milk powder may cause nausea, vomiting, diarrhea, decreased appetite, constipation, flatulence, or gastrointestinal upset (14325,42594,42607,42622,42643,42679).
Long-term exposure to heavy metals, including chromium, has been associated with increased risk of gallbladder disease and cancer (42682,42704).
Genitourinary ...Orally, chromium polynicotinate has been associated with disrupted menstrual cycles in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Hematologic ...Anemia, hemolysis, and thrombocytopenia were reported in a 33 year-old female taking chromium picolinate 1200-2400 mcg daily for 4-5 months (554). The patient received supportive care, blood product transfusions, and hemodialysis and was stabilized and discharged a few days later. Lab values were normal at a one-year follow-up.
Hepatic ...Liver damage has been reported for a 33-year-old female taking chromium picolinate 1200 mcg daily for 4-5 months (554). Also, acute hepatitis has been reported in a patient taking chromium polynicotinate 200 mcg daily for 5 months (9141). Symptoms resolved when the product was discontinued. Two cases of hepatotoxicity have been reported in patients who took a specific combination product (Hydroxycut), which also contained chromium polynicotinate in addition to several herbs (13037).
Musculoskeletal ...Acute rhabdomyolysis has been reported for a previously healthy 24-year-old female who ingested chromium picolinate 1200 mcg over a 48-hour time period (42786). Also, chromium polynicotinate has been associated with leg pain and paresthesia in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Neurologic/CNS ...Orally, chromium picolinate may cause headache, paresthesia, insomnia, dizziness, and vertigo (6860,10309,14325,42594). Vague cognitive symptoms, slowed thought processes, and difficulty driving occurred on three separate occasions in a healthy 35-year-old male after oral intake of chromium picolinate 200-400 mcg (42751). Transient increases in dreaming have been reported in three patients with dysthymia treated with chromium picolinate in combination with sertraline (2659). A specific combination product (Hydroxycut) containing chromium, caffeine, and ephedra has been associated with seizures (10307). But the most likely causative agent in this case is ephedra.
Psychiatric ...Orally, chromium picolinate has been associated with irritability and mood changes in patients taking the supplement to lose weight, while chromium polynicotinate has been associated with agitation and mood changes in patients taking the supplement to prevent weight gain during smoking cessation (6860,42643).
Renal
...Orally, chromium picolinate has been associated with at least one report of chronic interstitial nephritis and two reports of acute tubular necrosis (554,1951,14312).
Laboratory evidence suggests that chromium does not cause kidney tissue damage even after long-term, high-dose exposure (7135); however, patient- or product-specific factors could potentially increase the risk of chromium-related kidney damage. More evidence is needed to determine what role, if any, chromium has in potentially causing kidney damage.
Intravenously, chromium is associated with decreased glomerular filtration rate (GFR) in children who receive long-term chromium-containing total parenteral nutrition - TPN (11787).
Topically, burns caused by chromic acid, a hexavalent form of chromium, have been associated with acute chromium poisoning with acute renal failure (42699). Early excision of affected skin and dialysis are performed to prevent systemic toxicity.
Other ...Another form of chromium, called hexavalent chromium, is unsafe. This type of chromium is a by-product of some manufacturing processes. Chronic exposure can cause liver, kidney, or cardiac failure, pulmonary complications, anemia, and hemolysis (9141,11786,42572,42573,42699). Occupational inhalation of hexavalent chromium can cause ulceration of the nasal mucosa and perforation of the nasal septum, and has been associated with pneumoconiosis, allergic asthma, cough, shortness of breath, wheezing, and increased susceptibility to respiratory tract cancer and even stomach and germ cell cancers (42572,42573,42601,42610,42636,42667,42648,42601,42788,90056,90066). Although rare, cases of interstitial pneumonia associated with chromium inhalation have been reported. Symptoms resolved with corticosteroid treatment (42614).
General
...Orally and topically, DHEA seems to be well tolerated when used in typical doses, short-term.
However, there is some concern that long-term oral use of DHEA may be linked to a greater risk for cancer.
Most Common Adverse Effects:
Orally: Acne, headache, insomnia, mood changes, and nausea. In females, masculinization symptoms including deepening of the voice, increased size of genitals, irregular menses, oily skin, reduced breast size, and unnatural hair growth. In males, aggression, breast tenderness or enlargement (gynecomastia), urinary urgency, and testicular wasting.
Serious Adverse Effects (Rare):
Orally: Possible increased risk for cardiovascular events and various types of cancer.
Cardiovascular ...Incidences of arrhythmia (21334,47540), chest pain (21332,21333), palpitations (21332,21333,88492), hypertension, and transient ischemic attacks (21353,21354,47300) have been reported. DHEA has also been found to decrease high-density lipoprotein (HDL) levels (21344,21345,21346,21347,21348,21349) and increase triglycerides (21334).
Dermatologic ...Acne has been the most commonly reported adverse effect in human research, particularly in females (2113,2114,4242,7614,7559,12561,12574,21346,21351,21354)(21355,21356,21357,21358,21360,21361,21362,21363,21364,47300)(47355,47409,90304,103185). However, it is generally mild and may be treated by reducing the dose (7559). Incidences of contact dermatitis (47402), acneiform dermatitis (2113), greasy hair and skin (17218,21351,21355,21363,21387,21389,47355), keratosis (47402), skin rash (12574,21361,21363), erythema (21334), scalp itching (17218,21357), and skin spots (21387) have also been reported. Increased hair growth and hirsutism have been noted in several clinical trials, including the development of mild mustache in females (2114,4242,12561,12574,17218,21346,21351,21354,21355,21358) (21361,21362,21363,21370,21387,21389,21415,47300). Increased perspiration and odor have also been reported in human research (17218,21354,21356,21357).
Endocrine ...In postmenopausal patients, high doses of DHEA (1600 mg daily) induced insulin resistance, reportedly due to increased androgen levels that occurred during supplementation (21324).
Gastrointestinal ...Gastrointestinal disturbances such as nausea, diarrhea, and abdominal discomfort have been noted in human research (2111,6098,7559,12574,21348,21358,21386).
Genitourinary ...In older adults, elevated and severe urinary symptoms (as evidenced by scores of more than 20, using the American Urological Association Symptom Index for Benign Prostatic Hyperplasia [International Prostate Symptom Score]) and urinary tract infection were reported (21353). Rare incidences of abnormal menses (2114) and increased discharge (21415) have been reported. DHEA has been associated with hematuria (47300).
Hepatic ...Elevated liver enzymes have been reported following DHEA supplementation (21364,47300). However, an analysis of multiple studies in varied patient populations taking DHEA supplements found no elevations in liver enzymes (107791).
Musculoskeletal ...Incidences of asthenia, arthralgia, and myalgia, including calf cramps, have been reported (12574,21354,21358,21365,47355).
Neurologic/CNS ...In humans, dizziness, fatigue, malaise, sleep disturbances, increased dreaming, night sweats, restlessness, "painful spots," and a crawling scalp sensation have been reported (3865,21354,21363,21389). There is a case of seizure associated with DHEA use in a 30 year-old female with fragile X syndrome and no history of convulsive disorder who used DHEA to try to improve ovarian production (47344).
Ocular/Otic ...In patients with Sjögren syndrome, maculae lesions, ocular pain and dryness, and painful eye exams have been reported (21358,21363,21365).
Oncologic ...Preclinical research suggests that DHEA may increase the risk of cancer, particularly prostate, liver, breast, and pancreatic cancers (2111,10370,10401,10403,12565,21332,21333,21334,47251,47256)(47366,47388,47539). High concentrations of DHEA in postmenopausal patients have been associated with an increased risk of breast cancer (2115,6445).
Psychiatric ...DHEA-induced mania has been reported (5870,6102,7023,21383). Clinical studies have also reported anxiety, nervousness, irritability, emotional change, and depression in patients receiving DHEA (2114,21358,21360,21370).
Pulmonary/Respiratory ...Increased cough and nasal congestion have been noted in human research (3865,11334). A report of acute respiratory failure was made in clinical study evaluating the use of DHEA in patients with myotonic dystrophy (type 1) (21334).
Other ...Perceived increases in weight gain have been reported with use of DHEA (2114,21361).
General ...There is no reliable evidence regarding the safety of evodia from clinical trials. In animal studies, evodia has induced QT prolongation and Torsade de pointes (97035).
Cardiovascular ...In animal studies, evodia acts as a proarrhythmic agent with a dose-dependent effect. Evodia infusion has resulted in QT prolongation and Torsade de pointes (97035). It is not clear what dose of evodia, if any, is required to produce a similar effect in humans.
General
...Orally, rhodiola seems to be well tolerated.
Most Common Adverse Effects:
Orally: Dizziness, increased or decreased production of saliva.
Gastrointestinal ...Orally, rhodiola extract may cause dry mouth or excessive saliva production (16410,16411).
Neurologic/CNS ...Orally, rhodiola extract can cause dizziness (16410).
General
...Orally and intravenously, vinpocetine seems to be well tolerated.
Most Common Adverse Effects:
Orally: Anxiety, dizziness, headache, flushing, gastric discomfort, sleep disturbances, and urticaria.
Serious Adverse Effects (Rare):
Orally: Agranulocytosis, arrhythmias, and seizures.
Intravenously: Arrhythmias.
Cardiovascular ...Orally, tachycardia, multifocal extra systoles, transient hypotension and hypertension, and palpitations have been reported with vinpocetine in clinical trials (1789,82118,82152,92936). One case of severe hypotension has been reported with oral vinpocetine (106845). Vinpocetine has also been reported to cause atrial fibrillation and ventricular arrhythmias, with the highest incidence occurring after intravenous or intramuscular administration (1789,82128,68753,82123).
Dermatologic ...Orally, vinpocetine has been reported to cause flushing, skin rash, and urticaria (82118,82120,82153,106845). Intravenously, vinpocetine has been associated with one report of allergic dermatitis (98226).
Gastrointestinal ...Orally, gastric discomfort, upper abdominal pain, nausea, diarrhea, constipation, vomiting, heartburn, difficulty swallowing, and dry mouth have been reported with vinpocetine (1787,1789,10061,10221,82120,82154,82155,92936,106845). Intravenously, diarrhea has been reported with vinpocetine (98226).
Hematologic ...Orally, vinpocetine has been associated with one case report of agranulocytosis (82156) and one case report of ecchymoma of the eyelid in a 60-year-old male 12 hours after a botulinum toxin injection. The patient had been taking vinpocetine 30 mg daily and aspirin 100 mg daily (112878).
Neurologic/CNS ...Orally, anxiety, drowsiness, headache, sleep disturbance, nervousness, excitation, hyperirritability, epileptiform convulsion, and vertigo have been reported with vinpocetine (1787,10221,68772,82118,82120,82151,82152,82154,92936,106845). Intravenously, dizziness has been reported with vinpocetine (98226).
Ocular/Otic ...Orally, vinpocetine has been associated with one case of eyelid edema (106845). Also, one case reports ecchymoma of the eyelid in a 60-year-old male 12 hours after a botulinum toxin injection. The patient had been taking vinpocetine 30 mg daily and aspirin 100 mg daily (112878).
Pulmonary/Respiratory ...Orally, vinpocetine has been associated with one case of severe dyspnea (106845).
General
...Orally, there is limited information available about the adverse effects of yohimbe.
Yohimbine, a constituent of yohimbe, might be unsafe; most reported adverse effects are dose-related.
Most Common Adverse Effects:
Orally: Yohimbine, a constituent of yohimbe, has been associated with anxiety, agitation, diaphoresis, diarrhea, flushing, headache, hypertension, increased urination, nausea, tachycardia, tremors, vertigo, and vomiting.
Serious Adverse Effects (Rare):
Orally: Yohimbine, a constituent of yohimbe, has been associated with atrial fibrillation, hypertensive crisis, myocardial infarction, and QT interval prolongation.
Cardiovascular ...Orally, yohimbine, a constituent of yohimbe, has been associated with hypertension, especially at higher doses (3312,17465,86801,86802,86804,86811,86820,86822,86834,86856)(86786,86896). A case of hypertensive crisis was reported in a 63-year-old male taking a yohimbine-containing herbal product once daily for one month. The patient was successfully managed with intravenous nitroprusside followed by clonidine (91521). Tachycardia, fluid retention, palpitations, and chest discomfort have also been reported (3312,17465,86786,86793,86801,86802,86804,86822,86843,86854)(86856,86866,86867,86869,86871,86874,86875). Conduction abnormalities have also been reported (86856,86786). There have been some reports of myocardial infarction, atrial fibrillation, and QT interval prolongation (17465). In theory, these effects may also occur with the use of yohimbe bark extract.
Dermatologic ...Orally, yohimbine, a constituent of yohimbe, may cause rash, erythrodermic skin eruption, and exanthema (3312,3971,86804,86896,86878).
Gastrointestinal ...Orally, yohimbine, a constituent of yohimbe, may cause nausea, vomiting, increased salivation, diarrhea, and gastrointestinal distress (3970,17465,49902,86780,86781,86786,86801,86804,86824,86827)(86828,86829,86863,86878,86882,86896).
Genitourinary ...Orally, yohimbine may cause dartos contraction or decreased libido in some patients (86786,86882). A case of severe intractable priapism has been reported for a 42-year-old male who took a supplement containing yohimbe extract the previous day for sexual enhancement. Treatment with phenylephrine 400 mcg was unsuccessful at resolving the priapism, so surgical insertion of a proximal cavernosal spongiosum shunt was needed (86804).
Hematologic ...A case of drug-induced agranulocytosis has been reported following prolonged use of oral yohimbine, a constituent of yohimbe (86877).
Immunologic ...There is one report of a hypersensitivity reaction including fever; chills; malaise; itchy, scaly skin; progressive renal failure; and lupus-like syndrome associated with ingestion of a one-day dose of yohimbine, a constituent of yohimbe (6169).
Musculoskeletal ...Orally, yohimbine, a constituent of yohimbe, may cause muscle aches (86850).
Neurologic/CNS ...Orally, yohimbine, a constituent of yohimbe, has been associated with reports of general central nervous system (CNS) and autonomic excitation, tremulousness, head twitching, seizure threshold changes, enhanced brain norepinephrine release, decreased energy, dizziness, vertigo, and headache (3312,3971,86774,86779,86786,86804,86827,86857,86870,86882)(86883). Cold feet and chills have also been reported with yohimbine (86827,86896). Other adverse reactions include flushing and diaphoresis (17465). Excessive doses of yohimbine can also cause paralysis (11,18). A case of acute neurotoxicity characterized by malaise, vomiting, loss of consciousness, and seizures has been reported for a 37-year-old bodybuilder who ingested a single dose of yohimbine 5 grams. Improvement was seen within 12 hours following treatment with furosemide, labetalol, clonidine, urapidil, and gastrointestinal decontamination (86801).
Psychiatric ...Orally, yohimbine, a constituent of yohimbe, may increase malaise, fatigue, insomnia, restlessness, agitation, and anxiety (3312,3970,3971,17465,86786,86801,86804,86822,86827,86834)(86868,86878,86882,86896). In a clinical study of healthy subjects, administration of yohimbine increased impulsivity, with larger doses increasing impulsivity more than 50% (86784,86810).
Pulmonary/Respiratory ...Orally, yohimbine, a constituent of yohimbe, may cause bronchospasm, tachypnea, cough, and rhinorrhea (17465,86825,86850). A case of sinusitis characterized by pain and discomfort above both eyes has been reported for a 59-year-old male taking yohimbine 5.4 mg three times daily to treat erectile dysfunction. Symptoms resolved within 24 hours of discontinuing yohimbine. The effect was attributed to the alpha-2 adrenergic antagonist effects of yohimbine (94112). Excessive doses of yohimbine can cause respiratory depression (1118).
Renal ...Orally, yohimbine, a constituent of yohimbe, may increase urinary frequency (3312,3970,3971,17465,86804,86827,86850,86861,86882). A case of acute renal failure has been reported for a 42-year-old male taking yohimbine. Normalization of renal function was achieved following 2 weeks of treatment with corticosteroids. The renal dysfunction was attributed to yohimbine-induced systemic lupus erythematosus (6169).