Ingredients | Each Soft Gelatin Capsule Contains Imunohills Ghruta 500 mg Which Consists Of: |
---|---|
Quath Dravya of
|
|
(Curcuma longa )
|
44.45 mg |
(Emblica officinalis )
|
88.9 mg |
(Tinospora cordifolia )
|
133.35 mg |
Triphala
(Generic preparation)
(Triphala Note: Generic preparation )
|
44.45 mg |
(Azardirachta indica )
|
44.45 mg |
(Piper longum )
|
11.1 mg |
Bhumiamalaki
(Phyllanthus amarus )
|
44.45 mg |
(Tribulus terrestris )
|
88.9 mg |
Processed by the method of Siddha Ghruta in
|
|
Cow Milk
|
500 mg |
Go-Ghruta
|
500 mg |
Below is general information about the effectiveness of the known ingredients contained in the product Imunohills. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Imunohills. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when consumed in amounts commonly found in foods (6,2076).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Indian gooseberry fruit extract has been used safely in doses of up to 1000 mg daily for up to 6 months, 1500 mg daily for up to 8 weeks, or 2000 mg daily for up to 4 weeks (92515,99238,99240,99241,102855,102857,105352,105354,105356). Indian gooseberry leaf extract has been used with apparent safety at a dose of 750 mg daily for 10 days (99846). ...when used topically and appropriately. An emulsion containing Indian gooseberry extract 3% and other ingredients has been applied safely to the skin twice daily for up to 60 days (111571).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in food amounts. The fruit is commonly used in foods (101151). There is insufficient reliable information available about the safety of Indian long pepper when used in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in medicinal amounts.
POSSIBLY SAFE ...when neem bark extract is used orally and appropriately, short-term. Neem bark extract has been used safely in clinical research at doses up to 60 mg daily for up to 10 weeks (12822). ...when neem leaf and twig extract is used orally and appropriately, short-term. Neem leaf and twig extract has been used safely in clinical research at doses up to 500 mg twice daily for up to 12 weeks (104181). ...when neem leaf extract gel is used intraorally for up to 6 weeks (12824,64845,64850,94567). ...when neem oil, cream, or face wash is used topically on the skin for up to 2 weeks (64876,64878,64882,102867,107883).
POSSIBLY UNSAFE ...when neem or neem oil is used orally in large amounts or long-term. Preliminary clinical research suggests neem might be toxic to the kidneys or liver with high-dose or chronic use. Cardiac arrest has also been reported (12835,64870,64873).
CHILDREN: POSSIBLY SAFE
when neem extract is used topically.
It has been used with apparent safety as a shampoo, with one or two total applications (97928).
CHILDREN: LIKELY UNSAFE
when neem oil or seeds are used orally.
There are reports of infants who were severely poisoned and died after oral use of neem (3473,3474,3476,64855,64875).
PREGNANCY: LIKELY UNSAFE
when neem oil or leaf is used orally.
Neem oil and leaf have been used as abortifacients (12825,12835,64884,64889).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when the stem extract is used orally and appropriately, short-term. Tinospora cordifolia aqueous stem extract has been used with apparent safety at a dose of 900 mg daily for up to 8 weeks (15085). Powdered stem extract has also been used with apparent safety at a dose of up to 3 grams daily for up to 2 weeks or a dose of 1500 mg daily for up to 26 weeks (92230,106846,111503). There is insufficient reliable information available about the safety of other parts of Tinospora cordifolia when used orally or when any part of the plant is used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY UNSAFE ...when the spine-covered fruit is used orally. There have been reports of bilateral pneumothorax and bronchial polyp after oral consumption of the spine-covered fruit (818).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Animal research suggests that tribulus might adversely affect fetal development (12674); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Turmeric products providing up to 8 grams of curcumin have been safely used for up to 2 months (10453,11144,11150,17953,79085,89720,89721,89724,89728,101347)(81036,101349,107110,107116,107117,107118,107121,109278,109283). Turmeric in doses up to 3 grams daily has been used with apparent safety for up to 3 months (102350,104146,104148,113357). ...when used topically and appropriately (11148).
POSSIBLY SAFE ...when used as an enema, short-term. Turmeric extract in water has been used as a daily enema for up to 8 weeks (89729). ...when used topically as a mouthwash, short-term. A mouthwash containing 0.05% turmeric extract and 0.05% eugenol has been used safely twice daily for up to 21 days (89723).
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in food.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts; turmeric might stimulate the uterus and increase menstrual flow (12).
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food.
There is insufficient reliable information available about the safety of using turmeric in medicinal amounts during lactation.
Below is general information about the interactions of the known ingredients contained in the product Imunohills. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, Indian gooseberry may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs; however, research is conflicting.
Details
Clinical research shows that taking Indian gooseberry 500 mg as a single dose or twice daily for 10 days reduces platelet aggregation by about 24% to 36%, increases bleeding time by about 3.8-5.9 seconds, and increases clotting time by about 9.8-12.7 seconds when compared to baseline. However, taking Indian gooseberry 500 mg along with clopidogrel 75 mg or ecosprin 75 mg, as a single dose or for 10 days, does not significantly reduce platelet aggregation or increase bleeding time or clotting time when compared with clopidogrel 75 mg or ecosprin 75 mg alone (92514). Until more is known, use caution when taking Indian gooseberry in combination with anticoagulant/antiplatelet drugs.
|
Taking Indian gooseberry with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, Indian gooseberry may increase the risk of bleeding if used with aspirin; however, research is conflicting.
Details
Clinical research shows that taking Indian gooseberry 500 mg as a single dose or twice daily for 10 days reduces platelet aggregation by about 24% to 36%, increases bleeding time by about 3.8-5.9 seconds, and increases clotting time by about 9.8-12.7 seconds when compared to baseline. However, taking a single dose of Indian gooseberry 500 mg along with ecosprin 75 mg, or taking a combination of Indian gooseberry 500 mg twice daily plus ecosprin 75 mg once daily for 10 days, does not significantly reduce platelet aggregation or increase bleeding time or clotting time when compared with ecosprin 75 mg alone (92514).
|
Theoretically, Indian gooseberry may increase the risk of bleeding if used with clopidogrel; however, research is conflicting.
Details
Clinical research shows that taking Indian gooseberry 500 mg as a single dose or twice daily for 10 days reduces platelet aggregation by about 24% to 36%, increases bleeding time by about 3.8-5.9 seconds, and increases clotting time by about 9.8-12.7 seconds when compared to baseline. However, taking a single dose of Indian gooseberry 500 mg along with clopidogrel 75 mg, or taking a combination of Indian gooseberry 500 mg twice daily plus clopidogrel 75 mg once daily for 10 days, does not significantly reduce platelet aggregation or increase bleeding time or clotting time when compared with clopidogrel 75 mg alone (92514).
|
Theoretically, Indian long pepper might increase the effects and adverse effects of amoxicillin.
Details
Evidence from animal research shows that piperine, a constituent of Indian long pepper, increases the plasma levels of amoxicillin when taken concomitantly (29269).
|
Theoretically, Indian long pepper might increase the risk of bleeding when taken with anticoagulant/antiplatelet drugs.
Details
In vitro research shows that Indian long pepper extract inhibits platelet aggregation (101151).
|
Theoretically, Indian long pepper might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
Animal research shows that piperine, a constituent of Indian long pepper, can reduce blood glucose levels (29225). Monitor blood glucose levels closely. Dose adjustments might be necessary.
|
Theoretically, Indian long pepper might increase blood levels of carbamazepine.
Details
A small pharmacokinetic study in patients taking carbamazepine 300 mg or 500 mg twice daily shows that a single 20 mg dose of purified piperine, which is a constituent of Indian long pepper, increases carbamazepine levels. Piperine may increase absorption by increasing blood flow to the GI tract, increasing the surface area of the small intestine, or by cytochrome P450 3A4 (CYP3A4) inhibition in the gut wall. Absorption was significantly increased by 7-10 mcg/mL/hour. The time to eliminate carbamazepine was also increased by 4-8 hours. Although carbamazepine levels were increased, this did not appear to increase side effects (16833).
|
Theoretically, Indian long pepper might increase the effects and adverse effects of cefotaxime.
Details
Animal research shows that piperine, a constituent of Indian long pepper, increases the plasma levels of cefotaxime when taken concomitantly (29269).
|
Theoretically, Indian long pepper might increase the effects and adverse effects of cyclosporine.
Details
In vitro research shows that piperine, a constituent of Indian long pepper, increases the bioavailability of cyclosporine (29282).
|
Theoretically, Indian long pepper might increase the effects and adverse effects of CYP1A1 substrates.
Details
In vitro research shows that piperine, a constituent of Indian long pepper, inhibits CYP1A1 (29213).
|
Theoretically, Indian long pepper might increase the effects and adverse effects of CYP2B1 substrates.
Details
In vitro research shows that piperine, a constituent of Indian long pepper, inhibits CYP2B1 (29332).
|
Theoretically, Indian long pepper might increase the effects and adverse effects of CYP3A4 substrates.
Details
In vitro research shows that piperine, a constituent of Indian long pepper, inhibits CYP3A4 (14375).
|
Theoretically, Indian long pepper might increase blood levels of nevirapine.
Details
A small pharmacokinetic study shows that piperine, a constituent of Indian long pepper, increases the plasma concentration and systemic exposure of nevirapine. However, no adverse effects were associated with the elevated plasma levels of nevirapine (29209).
|
Theoretically, Indian long pepper might increase levels of P-glycoprotein substrates.
Details
|
Theoretically, Indian long pepper might increase the sedative effects of pentobarbital.
Details
Animal research shows that piperine, a constituent of Indian long pepper, can increase pentobarbitone-induced sleeping time (29214).
|
Theoretically, Indian long pepper might increase blood levels of phenytoin.
Details
A small pharmacokinetic study shows that piperine, a constituent of Indian long pepper, increases phenytoin serum levels and slows its elimination (537).
|
Theoretically, Indian long pepper might increase blood levels of propranolol.
Details
A small pharmacokinetic study shows that piperine, a constituent of Indian long pepper, accelerates absorption and increases serum concentrations of propranolol (538).
|
Theoretically, Indian long pepper might increase blood levels of rifampin.
Details
|
Indian long pepper might increase blood levels of theophylline.
Details
A small pharmacokinetic study shows that piperine, a constituent of Indian long pepper, increases serum concentrations and slows elimination of theophylline (538).
|
Neem might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, neem leaf extract might increase the levels and clinical effects of CYP2C8 substrates.
Details
In vitro research shows that neem leaf methanol extract inhibits CYP2C8 enzymes (111593). So far, this reaction has not been reported in humans.
|
Theoretically, neem leaf extract might increase the levels and clinical effects of CYP2C9 substrates.
Details
In vitro research shows that neem leaf methanol extract inhibits CYP2C9 enzymes (111593). So far, this reaction has not been reported in humans.
|
Theoretically, neem leaf extract might increase the levels and clinical effects of CYP3A4 substrates.
Details
In vitro research shows that neem leaf methanol extract inhibits CYP3A4 enzymes (111593). So far, this reaction has not been reported in humans.
|
Theoretically, neem might decrease the effectiveness of immunosuppressants.
Details
Animal research suggests that neem might have immunostimulant effects (12825).
|
Theoretically, neem leaf extract might increase the levels and clinical effects of P-glycoprotein substrates.
Details
In vitro research shows that neem leaf methanol extract inhibits renal P-glycoprotein transport activity (107850). So far, this reaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP1A2.
Details
In vitro research shows that Tinospora cordifolia extract inhibits CYP1A2 at high concentrations (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP2C19.
Details
In vitro research shows that Tinospora cordifolia extract inhibits CYP2C19 at high concentrations (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP2C9.
Details
In vitro research shows that Tinospora cordifolia extract inhibits CYP2C9. Animal research shows that Tinospora cordifolia extract 400 mg/kg twice daily for 14 days reduces the clearance and increases plasma levels of glyburide, a CYP2C9 substrate (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP2D6.
Details
In vitro research shows that Tinospora cordifolia extract inhibits CYP2D6 at high concentrations (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might reduce the effectiveness of immunosuppressants.
Details
|
Taking tribulus with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Clinical research shows that Tribulus can lower blood glucose levels in adults with type 2 diabetes who are taking antidiabetes medications (97327).
|
Theoretically, taking tribulus with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, tribulus might increase the levels and clinical effects of lithium.
Details
Tribulus is thought to have diuretic properties (12681). Due to these potential diuretic effects, tribulus might reduce excretion and increase levels of lithium. The dose of lithium might need to be decreased.
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research suggests that curcumin, a constituent of turmeric, inhibits mechlorethamine-induced apoptosis of breast cancer cells by up to 70%. Also, animal research shows that curcumin inhibits cyclophosphamide-induced tumor regression (96126). However, some in vitro research shows that curcumin does not affect the apoptosis capacity of etoposide. Also, other laboratory research suggests that curcumin might augment the cytotoxic effects of alkylating agents. Reasons for the discrepancies may relate to the dose of curcumin and the specific chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have on alkylating agents.
|
Taking turmeric with amlodipine may increase levels of amlodipine.
Details
Animal research shows that giving amlodipine 1 mg/kg as a single dose following the use of turmeric extract 200 mg/kg daily for 2 weeks increases the maximum concentration and area under the curve by 53% and 56%, respectively, when compared with amlodipine alone (107113). Additional animal research shows that taking amlodipine 1 mg/kg with a curcumin 2 mg/kg pretreatment for 10 days increases the maximum concentration and area under the curve by about 2-fold when compared with amlodipine alone (103099).
|
Turmeric may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Curcumin, a constituent of turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271). Furthermore, two case reports have found that taking turmeric along with warfarin or fluindione was associated with an increased international normalized ratio (INR) (89718,100906). However, one clinical study in healthy volunteers shows that taking curcumin 500 mg daily for 3 weeks, alone or with aspirin 100 mg, does not increase antiplatelet effects or bleeding risk (96137). It is possible that the dose of turmeric used in this study was too low to produce a notable effect.
|
Theoretically, taking turmeric with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Animal research and case reports suggest that curcumin, a turmeric constituent, can reduce blood glucose levels in patients with diabetes (79692,79984,80155,80313,80315,80476,80553,81048,81219). Furthermore, clinical research in adults with type 2 diabetes shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg decreased postprandial glucose levels for up to 24 hours when compared with glyburide alone, despite the lack of a significant pharmacokinetic interaction (96133). Another clinical study in patients with diabetes on hemodialysis shows that taking curcumin 80 mg daily for 12 weeks can reduce blood glucose levels when compared with placebo (104149).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro and animal research shows that curcumin, a constituent of turmeric, inhibits doxorubicin-induced apoptosis of breast cancer cells by up to 65% (96126). However, curcumin does not seem to affect the apoptosis capacity of daunorubicin. In fact, some research shows that curcumin might augment the cytotoxic effects of antitumor antibiotics, increasing their effectiveness. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effects, if any, antioxidants such as turmeric have on antitumor antibiotics.
|
Theoretically, turmeric might increase or decrease levels of drugs metabolized by CYP1A1. However, research is conflicting.
Details
|
Theoretically, turmeric might increase levels of drugs metabolized by CYP1A2. However, research is conflicting.
Details
|
Turmeric might increase levels of drugs metabolized by CYP3A4.
Details
In vitro and animal research show that turmeric and its constituents curcumin and curcuminoids inhibit CYP3A4 (21497,21498,21499). Also, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking turmeric and cancer medications that are CYP3A4 substrates, including everolimus, ruxolitinib, ibrutinib, and palbociclib, and bortezomib (111644). In another case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels after consuming turmeric powder at a dose of 15 or more spoonfuls daily for ten days prior. It was thought that turmeric increased levels of tacrolimus due to CYP3A4 inhibition (93544).
|
Theoretically, turmeric might increase blood levels of oral docetaxel.
Details
Animal research suggests that the turmeric constituent, curcumin, enhances the oral bioavailability of docetaxel (80999). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Theoretically, large amounts of turmeric might interfere with hormone replacement therapy through competition for estrogen receptors.
Details
In vitro research shows that curcumin, a constituent of turmeric, displaces the binding of estrogen to its receptors (21486).
|
Theoretically, taking turmeric and glyburide in combination might increase the risk of hypoglycemia.
Details
Clinical research shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg increases blood levels of glyburide by 12% at 2 hours after the dose in patients with type 2 diabetes. While maximal blood concentrations of glyburide were not affected, turmeric modestly decreased postprandial glucose levels for up to 24 hours when compared to glyburide alone, possibly due to the hypoglycemic effect of turmeric demonstrated in animal research (96133).
|
Theoretically, turmeric might increase the risk of liver damage when taken with hepatotoxic drugs.
Details
|
Theoretically, turmeric might increase the effects of losartan.
Details
Research in hypertensive rats shows that taking turmeric can increase the hypotensive effects of losartan (110897).
|
Theoretically, turmeric might have additive effects when used with hepatotoxic drugs such as methotrexate.
Details
In one case report, a 39-year-old female taking methotrexate, turmeric, and linseed oil developed hepatotoxicity (111644).
|
Theoretically, turmeric might increase the effects and adverse effects of norfloxacin.
Details
Animal research shows that taking curcumin, a turmeric constituent, can increase blood levels of orally administered norfloxacin (80863).
|
Theoretically, turmeric might increase blood levels of OATP4C1 substrates.
Details
In vitro research shows that the turmeric constituent curcumin competitively inhibits OATP4C1 transport. This transporter is expressed in the kidney and facilitates the renal excretion of certain drugs (113337). Theoretically, taking turmeric might decrease renal excretion of OATP substrates.
|
Theoretically, turmeric might increase the absorption of P-glycoprotein substrates.
Details
|
Theoretically, turmeric might alter blood levels of paclitaxel, although any effect may not be clinically relevant.
Details
Clinical research in adults with breast cancer receiving intravenous paclitaxel suggests that taking turmeric may modestly alter paclitaxel pharmacokinetics. Patients received paclitaxel on day 1, followed by either no treatment or turmeric 2 grams daily from days 2-22. Pharmacokinetic modeling suggests that turmeric reduces the maximum concentration and area under the curve of paclitaxel by 12.1% and 7.7%, respectively. However, these changes are not likely to be considered clinically relevant (108876). Conversely, animal research suggests that curcumin, a constituent of turmeric, enhances the oral bioavailability of paclitaxel (22005). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Turmeric might increase the effects and adverse effects of sulfasalazine.
Details
Clinical research shows that taking the turmeric constituent, curcumin, can increase blood levels of sulfasalazine by 3.2-fold (81131).
|
Turmeric might increase the effects and adverse effects of tacrolimus.
Details
In one case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels of 29 ng/mL. The patient previously had tacrolimus levels within the therapeutic range at 9.7 ng/mL. Ten days prior to presenting at the emergency room the patient started consumption of turmeric powder at a dose of 15 or more spoonfuls daily. It was thought that turmeric increased levels of tacrolimus due to cytochrome P450 3A4 (CYP3A4) inhibition (93544). In vitro and animal research show that turmeric and its constituent curcumin inhibit CYP3A4 (21497,21498,21499).
|
Turmeric may reduce the absorption of talinolol in some situations.
Details
Clinical research shows that taking curcumin for 6 days decreases the bioavailability of talinolol when taken together on the seventh day (80079). The clinical significance of this effect is unclear.
|
Theoretically, turmeric might reduce the levels and clinical effects of tamoxifen.
Details
In a small clinical trial in patients with breast cancer taking tamoxifen 20-30 mg daily, adding curcumin 1200 mg plus piperine 10 mg three times daily reduces the 24-hour area under the curve of tamoxifen and the active metabolite endoxifen by 12.8% and 12.4%, respectively, as well as the maximum concentrations of tamoxifen, when compared with tamoxifen alone. However, in the absence of piperine, the area under the curve for endoxifen and the maximum concentration of tamoxifen were not significantly reduced. Effects were most pronounced in patients who were extensive cytochrome P450 (CYP) 2D6 metabolizers (107123).
|
Turmeric has antioxidant effects. There is some concern that this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research shows that curcumin, a constituent of turmeric, inhibits camptothecin-induced apoptosis of breast cancer cells by up to 71% (96126). However, other in vitro research shows that curcumin augments the cytotoxic effects of camptothecin. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agents. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have.
|
Turmeric might increase the risk of bleeding with warfarin.
Details
One case of increased international normalized ratio (INR) has been reported for a patient taking warfarin who began taking turmeric. Prior to taking turmeric, the patient had stable INR measurements. Within a few weeks of starting turmeric supplementation, the patient's INR increased to 10 (100906). Additionally, curcumin, the active constituent in turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271), which may produce additive effects when taken with warfarin.
|
Below is general information about the adverse effects of the known ingredients contained in the product Imunohills. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally, Indian gooseberry seems to be well tolerated.
Dermatologic ...Orally, itching has been reported by one individual in a clinical trial (105354).
Gastrointestinal ...Orally, epigastric discomfort or dyspepsia have been reported by up to four individuals in clinical trials (105354,105356).
Hepatic ...In clinical research, increased serum glutamic pyruvic transaminase (SGPT) levels, with otherwise normal liver function, occurred in patients taking Ayurvedic formulations containing ginger, Tinospora cordifolia, and Indian gooseberry, with or without Boswellia serrata. The SGPT levels normalized after discontinuing the treatments (89557). It is unclear if these hepatic effects were due to Indian gooseberry or other ingredients contained in the formulations.
Musculoskeletal ...Orally, musculoskeletal pain has been reported by three individuals in a clinical trial (105354).
Neurologic/CNS ...Orally, fatigue has been reported by one individual in a clinical trial (105354).
Pulmonary/Respiratory ...Orally, breathlessness has been reported by one individual in a clinical trial (105354).
General ...Orally, Indian long pepper is well tolerated when used in food (101151). No adverse effects have been reported when Indian long pepper is used as medicine. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, neem extracts seem to be well tolerated in adults.
However, high-quality assessment of safety has not been conducted. In children, oral use of neem oil can cause serious adverse effects. Topically, neem seems to be well tolerated in children and adults.
Most Common Adverse Effects:
Topically: Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Cardiac arrest, nephrotoxicity, and ventricular fibrillation with neem leaf in adults. Encephalopathy, hematologic abnormalities, hepatotoxicity, and nephrotoxicity with neem oil in infants and young children.
Cardiovascular ...Orally, neem leaf has been reported to cause ventricular fibrillation and cardiac arrest after ingestion in humans (64873,64870).
Dental ...Topically, use of neem twigs to brush teeth, which is a traditional dental hygiene practice in India, has been associated with vitiligo of the lips. The limonoid constituents in neem, which have been shown to inhibit melanogenesis and have cytotoxic effects, combined with repeated, local trauma from this dental hygiene practice are thought to cause this leucodermic reaction. In a case series of seven patients experiencing vitiligo of the lips from neem twigs, use of toothpaste and topical tacrolimus along with avoidance of neem stopped the progression of depigmentation in all patients. Repigmentation was reported in four of the seven patients 12 months after discontinuing neem-based dental hygiene practices (100958).
Dermatologic ...Topically, neem products have been associated with dermatologic reactions. Some case reports have associated the use of topical neem oil with contact dermatitis (64851,94568,102867). In one case series, the topical application of neem seed extract shampoo was associated with skin irritation, red spots, and a burning feeling of the scalp (64848). Use of neem twigs to brush teeth, which is a traditional dental hygiene practice in India, has been associated with vitiligo of the lips. The limonoid constituents in neem, which have been shown to inhibit melanogenesis and have cytotoxic effects, combined with repeated, local trauma from this dental hygiene practice are thought to cause this leucodermic reaction. In a case series of seven patients experiencing vitiligo of the lips from neem twigs, use of toothpaste and topical tacrolimus along with avoidance of neem stopped the progression of depigmentation in all patients. Repigmentation was reported in four of the seven patients 12 months after discontinuing neem-based dental hygiene practices (100958).
Gastrointestinal ...Orally, neem oil has been reported to cause vomiting and loose stools in infants and small children (3473,3474,3476,64865).
Genitourinary ...Orally, neem leaf has been reported to cause oliguria and anuria in adults (12833,12834). After a single intrauterine instillation, purified neem oil has been reported to cause endometritis in healthy, tubectomised females (64886).
Hematologic
...Orally, neem leaf has been reported to cause hemolysis in adults (12835).
In one case report, a 35-year-old male with diabetes and glucose-6-phosphate dehydrogenase (G6PD) deficiency developed hemolytic anemia and jaundice after drinking several liters of neem tea daily for 3 weeks. All symptoms resolved after discontinuation and supportive treatment (94571). Orally, neem oil has been reported to cause metabolic acidosis, anemia, and polymorphonuclear leukocytosis in infants and young children (3473,3474,3476,64865).
A single intrauterine instillation of purified neem oil has been reported to cause mild transient eosinophilia in healthy, tubectomised females (64886).
Hepatic ...Orally, neem oil has been associated with reports of hepatotoxicity in infants and children. These adverse effects occurred after single doses of neem oil ranging from a few drops to 60 mL. Pathologic findings on liver biopsy reports have been consistent with Reye-like syndrome (3473,3474,3475).
Immunologic ...Topically, a case of aggravated bullous pemphigoid requiring hospitalization is reported in a 47-year-old patient with this autoimmune condition after application of neem oil to blisters for an unknown duration (111715).
Neurologic/CNS ...Orally, single doses of neem oil ranging from a few drops to 60 mL have been associated with reports of encephalopathy in infants and small children. Symptoms include drowsiness, seizure, loss of consciousness, coma, cerebral edema, Reye-like syndrome, and death within hours of ingestion (3473,3474,3476,3476,64855,94750). There is also at least one case report of neurotoxicity in an adult after ingestion of a neem-based pesticide. A 35-year-old female experienced neurotoxicity requiring intensive medical care and ventilation after ingestion of a pesticide containing azadirachtin, a constituent of neem oil (64858).
Ocular/Otic ...In one case report, a 35-year-old female developed toxic optic neuropathy and vision loss in both eyes lasting for two days after consuming 150 mL of neem oil in a suicide attempt five days earlier (64856).
Renal ...Orally, neem leaf has been reported to cause oliguria, anuria, acute tubular necrosis, and nephrotoxicity in adults (12833,12834). There are some case reports of children developing Reye-like syndrome after ingestion of neem oil. Pathologic findings on renal biopsy reports have been consistent with Reye syndrome (3473,3474,3475).
General
...Orally, Tinospora cordifolia seems to be well tolerated.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Headache and nasal pain.
Topically: Burning, erythema, and pruritus.
Serious Adverse Effects (Rare):
Orally: Liver injury has been reported.
Dermatologic ...Topically, Tinospora cordifolia has been reported to cause pruritus, erythema, and burning (92220).
Hepatic
...Orally, liver injury is reported after consumption of Tinospora cordifolia.
In 2 case series, autoimmune hepatitis, acute hepatitis, worsening of chronic liver disease, or acute liver failure is reported in 49 patients after consuming various forms and doses of Tinospora cordifolia alone or in combination with other ingredients for a median of 42-90 days. Of these patients, 2 required a liver transplant and 4 died (110533,110534).
Liver injury is also reported in patients taking combination supplements containing Tinospora cordifolia. One case reports a 50-year-old female who presented with a 2-week history of constant right upper quadrant abdominal pain, nausea, loss of appetite, and fatigue, along with severely elevated alanine transaminase (ALT) and aspartate aminotransferase (AST), after taking a specific combination product containing Tinospora cordifolia 900 mg, stinging nettle 600 mg, and quercetin 600 mg (HistaEze) daily for 4 to 5 weeks (112404). Another case reports a 54-year-old female who developed acute hepatitis with elevated ALT, AST, alkaline phosphatase, gamma-glutamyl transferase, and bilirubin after consuming a multi-ingredient product containing approximately 1900 mg of Tinospora cordifolia and 11 other Ayurvedic herbals daily for 2.5 months (112405). In both cases, liver function returned to normal within 3 months of discontinuing the supplement (112404,112405). It is unclear whether the liver injury in these cases is due to Tinospora cordifolia, other ingredients, or the combination.
Neurologic/CNS ...Orally, Tinospora cordifolia has been reported to cause headache in a clinical trial (15085).
Pulmonary/Respiratory ...Orally, Tinospora cordifolia extract has been reported to cause nasal pain in a clinical trial (15085).
General
...Orally, tribulus seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Cases of liver and kidney injury, seizures, and chronic painful erection with impaired sexual function have been reported. Pneumothorax and bronchial polyp after consuming the spine-covered tribulus fruit have been reported.
Gastrointestinal ...Orally, tribulus can cause abdominal pain, cramping, nausea, vomiting, diarrhea, and constipation (92022,92027). However, in one study, the rates of these gastrointestinal complaints were similar for patients taking tribulus and those receiving placebo (92022).
Genitourinary ...In one case report, a patient taking two tribulus tablets (unknown dose) daily for 15 days presented to the local emergency department with a painful erection lasting 72 hours. The priapism was resolved with medical management; however, post-episode sexual function was impaired (92023).
Hepatic ...In one case report, a patient drinking tribulus water 2 liters daily for two days presented with lower limb weakness, seizures, hepatitis, and acute kidney injury. The patient's condition improved after hemodialysis and discontinuation of tribulus water (92069).
Neurologic/CNS ...Orally, tribulus has been reported to cause general excitation and insomnia. These symptoms were reversed upon discontinuation of the drug or decreasing the dose (78867). In one case report, a patient drinking tribulus water 2 liters daily for two days presented with lower limb weakness, seizures, hepatitis, and acute kidney injury. The patient's condition improved after hemodialysis and discontinuation of tribulus water (92069).
Pulmonary/Respiratory ...In one case report, a patient developed a bilateral pneumothorax after consuming the spine-covered fruit of tribulus (818). In another case report, a patient developed a polyp in the lobar bronchus of the right interior lobe due to the presence of a tribulus fruit spine (78852).
Renal ...In one case report, a patient drinking tribulus water 2 liters daily for two days presented with lower limb weakness, seizures, hepatitis, and acute kidney injury. The patient's condition improved after hemodialysis and discontinuation of the tribulus water (92069). In another case report, a healthy male taking one tribulus tablet (unknown dose) daily for a few months for bodybuilding purposes developed hyperbilirubinemia followed by acute kidney failure 2-3 weeks later. The patient was managed with intravenous fluids and a low-salt, low-protein diet (92025).
Other ...In one case report, gynecomastia was observed in a male weightlifter taking an herbal combination product containing tribulus. However, it is not clear if this adverse effect can be attributed to tribulus alone (78859).
General
...Orally and topically, turmeric is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, dyspepsia, diarrhea, distension, gastroesophageal reflux, nausea, and vomiting.
Topically: Curcumin, a constituent of turmeric, can cause contact urticaria and pruritus.
Cardiovascular ...Orally, a higher dose of turmeric in combination with other ingredients has been linked to atrioventricular heart block in one case report. It is unclear if turmeric caused this adverse event or if other ingredients or a contaminant were the cause. The patient had taken a combination supplement containing turmeric 1500-2250 mg, black soybean 600-900 mg, mulberry leaves, garlic, and arrowroot each about 300-450 mg, twice daily for one month before experiencing atrioventricular heart block. Heart rhythm normalized three days after discontinuation of the product. Re-administration of the product resulted in the same adverse effect (17720).
Dermatologic ...Following occupational and/or topical exposure, turmeric or its constituents curcumin, tetrahydrocurcumin, or turmeric oil, can cause allergic contact dermatitis (11146,79270,79470,79934,81410,81195). Topically, curcumin can also cause rash or contact urticaria (79985,97432,112117). In one case, a 60-year-old female, with no prior reactivity to regular oral consumption of turmeric products, developed urticaria after topical application of turmeric massage oil (97432). A case of pruritus has been reported following topical application of curcumin ointment to the scalp for the treatment of melanoma (11148). Yellow discoloration of the skin has been reported rarely in clinical research (113356). Orally, curcumin may cause pruritus, but this appears to be relatively uncommon (81163,97427,104148). Pitting edema may also occur following oral intake of turmeric extract, but the frequency of this adverse event is less common with turmeric than with ibuprofen (89720). A combination of curcumin plus fluoxetine may cause photosensitivity (89728).
Gastrointestinal ...Orally, turmeric can cause gastrointestinal adverse effects (107110,107112,112118), including constipation (81149,81163,96135,113355), flatulence and yellow, hard stools (81106,96135), nausea and vomiting (10453,17952,89720,89728,96127,96131,96135,97430,112117,112118), diarrhea or loose stool (10453,17952,18204,89720,96135,110223,112117,112118), dyspepsia (17952,89720,89721,96161,112118), gastritis (89728), distension and gastroesophageal reflux disease (18204,89720), abdominal fullness and pain (81036,89720,96161,97430), epigastric burning (81444), and tongue staining (89723).
Hepatic
...Orally, turmeric has been associated with liver damage, including non-infectious hepatitis, cholestasis, and hepatocellular liver injury.
There have been at least 70 reports of liver damage associated with taking turmeric supplements for at least 2 weeks and for up to 14 months. Most cases of liver damage resolved upon discontinuation of the turmeric supplement. Sometimes, turmeric was used concomitantly with other supplements and medications (99304,102346,103094,103631,103633,103634,107122,109288,110221). The Drug-Induced Liver Injury Network (DILIN) has identified 10 cases of liver injury which were considered to be either definitely, highly likely, or probably associated with turmeric; none of these cases were associated with the use of turmeric in combination with other potentially hepatotoxic supplements. Most patients (90%) presented with hepatocellular pattern of liver injury. The median age of these case reports was 56 years and 90% identified as White. In these case reports, the carrier frequency on HLAB*35:01 was 70%, which is higher than the carrier frequency found in the general population. Of the ten patients, 5 were hospitalized and 1 died from liver injury (109288).
It is not clear if concomitant use with other supplements or medications contributes to the risk for liver damage. Many case reports did not report turmeric formulation, dosing, or duration of use (99304,103094,103631,103634,109288). However, at least 10 cases involved high doses of curcumin (250-1812.5 mg daily) and the use of highly bioavailable formulations such as phytosomal curcumin and formulations containing piperine (102346,103633,107122,109288,110221).
Neurologic/CNS ...Orally, the turmeric constituent curcumin can cause vertigo, but this effect seems to be uncommon (81163).
Psychiatric ...Orally, the turmeric constituent curcumin or a combination of curcumin and fluoxetine can cause giddiness, although this event seems to be uncommon (81206,89728).
Renal ...Orally, turmeric has been linked to one report of kidney failure, although the role of turmeric in this case is unclear. A 69-year-old male developed kidney failure related to calcium oxalate deposits in the renal tubules following supplementation with turmeric 2 grams daily for 2 years as an anti-inflammatory for pelvic pain. While turmeric is a source of dietary oxalates, pre-existing health conditions and/or chronic use of antibiotics may have contributed to the course of disease (113343).
Other ...There is a single case report of death associated with intravenous use of turmeric. However, analysis of the treatment vial suggests that the vial contained only 0.023% of the amount of curcumin listed on the label. Also, the vial had been diluted in a solution of ungraded polyethylene glycol (PEG) 40 castor oil that was contaminated with 1.25% diethylene glycol. Therefore the cause of death is unknown but is unlikely to be related to the turmeric (96136).