Ingredients | Amount Per Serving |
---|---|
Proprietary Blend
|
267 mg |
(leaf)
|
|
Green Tea leaf extract
(leaf)
(with Polyphenols)
(Green Tea leaf extract (Form: with Polyphenols) PlantPart: leaf )
|
|
(Cassia nomame )
(whole plant)
|
|
(bark)
|
|
Gelatin, Stearic Acid (Alt. Name: C18:0), Magnesium Stearate, Titanium Dioxide, Dibasic Calcium Phosphate, Microcrystalline Cellulose, FD&C Yellow #5, FD&C Blue #1, FD&C Red #3, FD&C Yellow #6
Below is general information about the effectiveness of the known ingredients contained in the product Stacker 2. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of Cassia nomame.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Stacker 2. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally, parenterally, or rectally and appropriately. Caffeine has Generally Recognized As Safe (GRAS) status in the US (4912,98806). Caffeine is also an FDA-approved product and a component of several over-the-counter and prescription products (4912,11832). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, doses of caffeine up to 400 mg daily are not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806). This amount of caffeine is similar to the amount of caffeine found in approximately 4 cups of coffee. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
POSSIBLY UNSAFE ...when used orally, long-term or in high doses (91063). Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other adverse effects (3719). Acute use of high doses, typically above 400 mg daily, has been associated with significant adverse effects such as tachyarrhythmia and sleep disturbances (11832). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
LIKELY UNSAFE ...when used orally in very high doses. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg/kg). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, or prior caffeine use (11832,95700,97454,104573). Caffeine products sold to consumers in highly concentrated or pure formulations are considered to a serious health concern because these products have a risk of being used in very high doses. Concentrated liquid caffeine can contain about 2 grams of caffeine in a half cup. Powdered pure caffeine can contain about 3.2 grams of caffeine in one teaspoon. Powdered pure caffeine can be fatal in adults when used in doses of 2 tablespoons or less. As of 2018, these products are considered by the FDA to be unlawful when sold to consumers in bulk quantities (95700).
CHILDREN: POSSIBLY SAFE
when used orally or intravenously and appropriately in neonates under the guidance of a healthcare professional (6371,38340,38344,91084,91087,97452).
...when used orally in amounts commonly found in foods and beverages in children and adolescents (4912,11833,36555). Daily intake of caffeine in doses of less than 2.5 mg/kg daily are not associated with significant adverse effects in children and adolescents (11733,98806). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY SAFE
when used orally in amounts commonly found in foods.
Intakes of caffeine should be monitored during pregnancy. Caffeine crosses the human placenta, but is not considered a teratogen (38048,38252,91032). Fetal blood and tissue levels are similar to maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,16014,16015,98806,108814). In some studies consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014,37960). This increased risk seems to occur in those with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, up to 300 mg daily can be consumed during pregnancy without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). However, observational research in a Norwegian cohort found that caffeine consumption is associated with a 16% increased odds of the baby being born small for gestational age when compared with no consumption (100369,103707). The same Norwegian cohort found that low to moderate caffeine consumption during pregnancy is not associated with changes in neurodevelopment in children up to 8 years of age (103699). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee or tea.
PREGNANCY: POSSIBLY UNSAFE
when used orally in amounts over 300 mg daily.
Caffeine crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260,98806). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee or tea. Additionally, high doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711,91033,91048,95949). In a cohort of mother/infant pairs with a median maternal plasma caffeine level of 168.5 ng/mL (range 29.5-650.5 ng/mL) during pregnancy, birth weights and lengths were lower in the 4th quartile of caffeine intake compared with the 1st. By age 7, heights and weights were lower by 1.5 cm and 1.1 kg respectively. In another cohort of mother/infant pairs with higher maternal pregnancy plasma caffeine levels, median 625.5 ng/mL (range 86.2 to 1994.7 ng/mL), heights at age 8 were 2.2 cm lower, but there was no difference in weights (109846).
LACTATION: POSSIBLY SAFE
when used orally in amounts commonly found in foods.
Caffeine intake should be closely monitored while breast-feeding. During lactation, breast milk concentrations of caffeine are thought to be approximately 50% of serum concentrations and caffeine peaks in breastmilk approximately 1-2 hours after consumption (23590).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Caffeine is excreted slowly in infants and may accumulate. Caffeine can cause sleep disturbances, irritability, and increased bowel activity in breast-fed infants exposed to caffeine (2708,6026).
There is insufficient reliable information available about the safety of Cassia nomame.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when the prepared gum resin is used orally and appropriately. It has been used with apparent safety in clinical trials for up to 24 weeks (3267,3268,10371). There is insufficient reliable information available about the safety of guggul when used topically.
PREGNANCY: LIKELY UNSAFE
when used orally; avoid using.
Guggul gum resin appears to stimulate menstrual flow and the uterus (12).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Willow bark has been used safely for up to 12 weeks (6456,12474,12475,12804,12811,86473,91406).
CHILDREN: POSSIBLY UNSAFE
when used orally for viral infections.
Salicylic acid and aspirin are contraindicated in children with viral infections (12801). Although Reye's syndrome has not been reported, the salicin constituent in willow bark is similar to aspirin and might pose the same risk.
PREGNANCY:
Insufficient reliable information available; avoid using.
LACTATION: POSSIBLY UNSAFE
when used orally.
Willow bark contains salicylates which are excreted in breast milk and have been linked to adverse effects in breast-fed infants (12802,12803).
POSSIBLY SAFE ...when used orally and appropriately, short-term (11866). Yerba mate has been safely used in doses of 3 grams daily for up to 12 weeks (92152,96469,96470).
POSSIBLY UNSAFE ...when yerba mate is used orally in large amounts or for prolonged periods of time. Drinking approximately 1-2 liters, or 4-8 cups, of yerba mate daily is associated with an increased risk of cancer, including esophageal, stomach, kidney, bladder, cervical, prostate, lung, renal cell, and possibly laryngeal and mouth cancer (1528,1529,1530,1531,11863,11864,92150). Yerba mate also contains caffeine. Acute use of high doses of caffeine (more than 400 mg per day), which is found in more than 8-10 cups of yerba mate, has been associated with significant adverse effects such as tachyarrhythmia and sleep disturbances (11832). Drinking yerba mate in amounts greater than 12-15 cups daily (about 600 mg caffeine) short-term or long-term can also cause caffeinism with symptoms of anxiety possibly progressing to delirium and agitation. Chronic use of caffeine, especially in large amounts, can sometimes produce tolerance, habituation, and psychological dependence (3719). Abrupt discontinuance of caffeine can cause physical withdrawal symptoms (11733). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as yerba mate, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
CHILDREN: POSSIBLY UNSAFE
when used orally.
Yerba mate is associated with an increased risk of cancer, including esophageal, kidney, bladder, cervical, prostate, lung, and possibly mouth and laryngeal cancer (1528,1529,1530,1531,11863,11864,92150).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Yerba mate is associated with an increased risk of cancer, including esophageal, kidney, bladder, cervical, prostate, lung, renal cell, and possibly mouth and laryngeal cancer (1528,1529,1530,1531,11863,11864,92150,86595,86614,86700,86701). However, teratogenic studies have not been performed. Yerba mate also contains caffeine. Caffeine crosses the placenta, producing fetal blood concentrations similar to parental levels. According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy pregnant patients can safely consume caffeine in doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). It is generally recommended to avoid consuming more than 300 mg of caffeine daily, or around 6-7 cups of yerba mate daily, when pregnant (2708). High doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891,86618). Caffeine in doses of greater than 300 mg daily has also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711), although one retrospective study found that consuming yerba mate tea during pregnancy was not associated with preterm or small for gestational age births (13113). However, this study did not consider the amount of yerba mate or caffeine consumed, only the frequency of consumption. Some research has found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846).
LACTATION: POSSIBLY UNSAFE
when used orally.
Yerba mate is associated with an increased risk of cancer, including esophageal, kidney, bladder, cervical, prostate, lung, renal cell, and possibly mouth and laryngeal cancer (1528,1529,1530,1531,11863,11864,92150). Whether carcinogenic constituents of yerba mate are transferred via breast milk is unknown. Yerba mate contains caffeine. Consumption of yerba mate might cause irritability and increased bowel activity in nursing infants (6026).
Below is general information about the interactions of the known ingredients contained in the product Stacker 2. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, caffeine might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Details
Some evidence shows that caffeine is a competitive inhibitor of adenosine and can reduce the vasodilatory effects of adenosine in humans (38172). However, other research shows that caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, concomitant use might increase levels and adverse effects of caffeine.
Details
Alcohol reduces caffeine metabolism. Concomitant use of alcohol can increase caffeine serum concentrations and the risk of caffeine adverse effects (6370).
|
Theoretically, caffeine may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, taking caffeine with antidiabetes drugs might interfere with blood glucose control.
Details
|
Theoretically, large amounts of caffeine might increase the cardiac inotropic effects of beta-agonists (15).
|
Theoretically, caffeine might reduce the effects of carbamazepine and increase the risk for convulsions.
Details
Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, cimetidine might increase the levels and adverse effects of caffeine.
Details
Cimetidine decreases the rate of caffeine clearance by 31% to 42% (11736).
|
Caffeine might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Details
Caffeine might increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg per day inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Although researchers speculate that caffeine might inhibit CYP1A2, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients more sensitive to an interaction between clozapine and caffeine (13741). In one case report, severe, life-threatening clozapine toxicity and multiorgan system failure occurred in a patient with schizophrenia stabilized on clozapine who consumed caffeine 600 mg daily (108817).
|
Theoretically, contraceptive drugs might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, caffeine might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Details
Caffeine inhibits dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram use might increase the levels and adverse effects of caffeine.
Details
Disulfiram decreases the rate of caffeine clearance (11840).
|
Theoretically, using caffeine with diuretic drugs might increase the risk of hypokalemia.
Details
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
Details
Use of ephedrine with caffeine can increase the risk of stimulatory adverse effects. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,10307).
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, caffeine might reduce the effects of ethosuximide and increase the risk for convulsions.
Details
Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, caffeine might reduce the effects of felbamate and increase the risk for convulsions.
Details
Animal research suggests that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Details
Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, caffeine might increase the levels and adverse effects of flutamide.
Details
In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). However, this effect has not been reported in humans.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Details
Fluvoxamine reduces caffeine metabolism (6370).
|
Theoretically, abrupt caffeine withdrawal might increase the levels and adverse effects of lithium.
Details
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Details
Animal research suggests that metformin can reduce caffeine metabolism (23571). However, this effect has not been reported in humans.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Details
Methoxsalen reduces caffeine metabolism (23572).
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Details
Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Details
Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, caffeine might decrease the effects of pentobarbital.
Details
Caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, caffeine might reduce the effects of phenobarbital and increase the risk for convulsions.
Details
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
Details
|
Theoretically, caffeine might reduce the effects of phenytoin and increase the risk for convulsions.
Details
|
Theoretically, caffeine might increase the levels and clinical effects of pioglitazone.
Details
Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Details
Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce the metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Details
Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Details
Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, caffeine might increase the levels and adverse effects of theophylline.
Details
Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, caffeine might increase the levels and adverse effects of tiagabine.
Details
Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Details
In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, caffeine might reduce the effects of valproate and increase the risk for convulsions.
Details
|
Theoretically, verapamil might increase the levels and adverse effects of caffeine.
Details
Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, guggul might increase the risk of bleeding when taken with anticoagulant/antiplatelet drugs.
Details
|
Theoretically, guggul might increase the risk of adverse effects when taken with contraceptive drugs.
Details
In vitro research shows that guggul has estrogen-alpha receptor agonist activity (12444).
|
Theoretically, guggul might reduce the effects of CYP3A4 substrates.
Details
In vitro research shows that guggul constituents known as guggulsterones can induce CYP3A4 (12444).
|
Guggul might reduce the effects of diltiazem.
Details
A small pharmacokinetic study shows that concomitant use of guggul with diltiazem reduces the bioavailability of diltiazem (383).
|
Theoretically, guggul might increase the risk of adverse effects when taken with estrogens.
Details
In vitro research shows that guggul constituents known as guggulsterones have estrogen-alpha receptor agonist activity (12444).
|
Guggul might reduce the effects of propranolol.
Details
A small pharmacokinetic study shows that concomitant use of guggul with propranolol reduces the bioavailability of propranolol (383).
|
Theoretically, guggul might increase the effects and adverse effects of rosuvastatin.
Details
Animal research shows that guggul increases the bioavailability and hypolipidemic effects of rosuvastatin (109584). The mechanism of this interaction is unclear.
|
Theoretically, guggul might interfere with tamoxifen therapy.
Details
In vitro research shows that guggul has estrogen-alpha receptor agonist activity (12444).
|
Theoretically, guggul might increase the risk for adverse effects when taken with thyroid hormone therapy.
Details
Animal research suggests that guggul has thyroid-stimulating effects (8153).
|
Theoretically, willow bark might result in additive adverse effects associated with acetazolamide.
Details
Willow bark contains salicin, a plant salicylate. Human case reports suggests that a combination of acetazolamide and salicylate increases unbound plasma levels of acetazolamide, as well as adverse effects related to acetazolamide (86481).
|
Theoretically, willow bark might increase the risk of bleeding when taken with anticoagulant/antiplatelet drugs.
Details
Willow bark has antiplatelet effects, but less so than aspirin (12810).
|
Theoretically, willow bark might increase the effects and adverse effects of aspirin.
Details
Willow bark contains salicin, a plant salicylate. It might have an additive effect when taken with other salicylate-containing drugs such as aspirin (12808).
|
Theoretically, willow bark might increase the effects and adverse effects of choline magnesium trisalicylate.
Details
Willow bark contains salicin, a plant salicylate. It might have an additive effect when taken with other salicylate-containing drugs such as choline magnesium trisalicylate (12808).
|
Theoretically, willow bark might increase the effects and adverse effects of salsalate.
Details
Willow bark contains salicin, a plant salicylate. It might have an additive effect when taken with other salicylate-containing drugs such as salsalate (12808).
|
Theoretically, the caffeine in yerba mate might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Details
Yerba mate contains caffeine. Some evidence shows that caffeine is a competitive inhibitor of adenosine and can reduce the vasodilatory effects of adenosine in humans (38172). However, other research shows that caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). Still, some researchers recommend that methylxanthines, such as caffeine, as well as methylxanthine-containing products, should be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, concomitant use of alcohol and yerba mate might increase levels and adverse effects of the caffeine in yerba mate.
Details
|
Theoretically, the caffeine in yerba mate may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, taking yerba mate with antidiabetes drugs might interfere with blood glucose control.
Details
|
Theoretically, the caffeine in yerba mate might reduce the efficacy of benzodiazepines.
Details
|
Theoretically, the caffeine in yerba mate might increase the cardiac inotropic effects of beta-agonists, especially if taken in large amounts.
Details
Yerba mate contains caffeine. Caffeine can increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, the caffeine in yerba mate might reduce the effects of carbamazepine and increase the risk for convulsions.
Details
Yerba mate contains caffeine. Animal research suggests that caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine two-fold in healthy individuals (23562).
|
Theoretically, cimetidine might increase the levels and adverse effects of the caffeine contained in yerba mate.
Details
|
Theoretically, the caffeine in yerba mate might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Details
Yerba mate contains caffeine. Caffeine might increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg per day inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Although researchers speculate that caffeine might inhibit CYP1A2, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients more sensitive to an interaction between clozapine and caffeine (13741).
|
Theoretically, contraceptive drugs might increase the levels and adverse effects of the caffeine contained in yerba mate.
Details
|
Theoretically, concomitant use of CYP1A2 inhibitors and yerba mate might increase levels and adverse effects of the caffeine in yerba mate.
Details
|
Theoretically, yerba mate might increase the levels and clinical effects of CYP3A4 substrates.
Details
In vitro research shows that yerba mate extract inhibits CYP3A4 enzymes (105811). Theoretically, taking yerba mate may increase levels and adverse effects of CYP3A4 substrates.
|
Theoretically, the caffeine in yerba mate might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Details
Yerba mate contains caffeine. Caffeine inhibits dipyridamole-induced vasodilation (11770,11772). Still, some researchers recommend that methylxanthines, such as caffeine, as well as methylxanthine-containing products, should be stopped 24 hours prior to pharmacological stress (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the levels and adverse effects of the caffeine in yerba mate.
Details
|
Theoretically, the caffeine in yerba mate might increase the risk of hypokalemia when used concomitantly with other diuretics.
Details
|
Theoretically, the caffeine in yerba mate might increase the risk for stimulant adverse effects when used concomitantly with ephedrine.
Details
Use of ephedrine with caffeine can increase the risk of stimulatory adverse effects. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,10307).
|
Theoretically, estrogens might increase the levels and adverse effects of the caffeine in yerba mate.
Details
Yerba mate contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, the caffeine in yerba mate might reduce the effects of ethosuximide and increase the risk for convulsion.
Details
Yerba mate contains caffeine. Animal research shows that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, the caffeine in yerba mate might reduce the effects of felbamate and increase the risk for convulsion.
Details
Yerba mate contains caffeine. Animal research shows that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Theoretically, fluconazole might increase the levels and adverse effects of the caffeine in yerba mate.
Details
|
Theoretically, the caffeine in yerba mate might increase the levels and adverse effects of flutamide.
Details
Yerba mate contains caffeine. In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). However, this effect has not been reported in humans.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of the caffeine in yerba mate.
Details
|
Theoretically, abrupt withdrawal of the caffeine in yerba mate might increase serum lithium levels.
Details
|
Theoretically, metformin might increase the levels and adverse effects of the caffeine in yerba mate.
Details
Yerba mate contains caffeine. Animal research suggests that metformin can reduce caffeine metabolism (23571). However, this effect has not been reported in humans.
|
Theoretically, methoxsalen might increase the levels and adverse effects of the caffeine in yerba mate.
Details
Yerba mate contains caffeine. Methoxsalen reduces caffeine metabolism (23572).
|
Theoretically, mexiletine might increase the levels and adverse effects of the caffeine in yerba mate.
Details
|
Theoretically, use of yerba mate with midazolam might increase midazolam metabolite levels and adverse effects.
Details
In vitro research shows that yerba mate extract containing 6.75% chlorogenic acid significantly inhibits the metabolism of midazolam via inhibition of cytochrome P450 3A4 (CYP3A4)(105811).
|
Theoretically, the caffeine in yerba mate might increase risk of a hypertensive crisis when used concomitantly with MAOIs.
Details
Yerba mate contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, the caffeine in yerba mate might increase risk of hypertension when used concomitantly with nicotine.
Details
|
Theoretically, the caffeine in yerba mate might decrease the effects of pentobarbital.
Details
The caffeine in yerba mate might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, the caffeine in yerba mate might reduce the effects of phenobarbital and increase the risk for convulsions.
Details
|
Theoretically, phenylpropanolamine might increase the risk of hypertension as well as the levels and adverse effects of the caffeine in yerba mate.
Details
|
Theoretically, the caffeine in yerba mate might reduce the effects of phenytoin and increase the risk for convulsions.
Details
Yerba mate contains caffeine. Animal research suggests that caffeine can decrease the anticonvulsant activity of phenytoin (23561). The effect does not seem to be related to the seizure threshold-lowering effects of caffeine. However, the exact mechanism of this interaction is unclear.
|
Theoretically, the caffeine in yerba mate might increase the levels and clinical effects of pioglitazone.
Details
Yerba mate contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of the caffeine in yerba mate.
Details
|
Theoretically, concomitant use of riluzole and yerba mate might increase levels and adverse effects of both riluzole and the caffeine in yerba mate.
Details
Yerba mate contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce the metabolism of one or both agents (11739).
|
Theoretically, concomitant use of stimulant drugs and yerba mate might increase stimulant adverse effects.
Details
Yerba mate contains caffeine. Due to the CNS stimulant effects of the caffeine, concomitant use can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of the caffeine in yerba mate.
Details
Yerba mate contains caffeine. Terbinafine decreases the rate of caffeine clearance by 19% (11740).
|
Theoretically, the caffeine in yerba mate might increase the levels and adverse effects of theophylline.
Details
Yerba mate contains caffeine. Caffeine decreases theophylline clearance by 23% to 29% (11741).
|
Theoretically, the caffeine in yerba mate might increase the levels and adverse effects of tiagabine.
Details
Yerba mate contains caffeine. Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of the caffeine in yerba mate.
Details
Yerba mate contains caffeine. In vitro research shows that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, the caffeine in yerba mate might reduce the effects of valproate and increase the risk for convulsions.
Details
|
Theoretically, verapamil might increase the levels and adverse effects of the caffeine in yerba mate.
Details
Yerba mate contains caffeine. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Below is general information about the adverse effects of the known ingredients contained in the product Stacker 2. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Caffeine in moderate doses is typically well tolerated.
Most Common Adverse Effects:
Orally: Anxiety, dependence with chronic use, diarrhea, diuresis, gastric irritation, headache, insomnia, muscular tremors, nausea, and restlessness.
Serious Adverse Effects (Rare):
Orally: Stroke has been reported rarely.
Cardiovascular
...Caffeine can temporarily increase blood pressure.
Usually, blood pressure increases 30 minutes after ingestion, peaks in 1-2 hours, and remains elevated for over 4 hours (36539,37732,37989,38000,38300).
Although acute administration of caffeine can cause increased blood pressure, regular consumption does not seem to increase either blood pressure or pulse, even in mildly hypertensive patients (1451,1452,2722,38335). However, the form of caffeine may play a role in blood pressure increase after a more sustained caffeine use. In a pooled analysis of clinical trials, coffee intake was not associated with an increase in blood pressure, while ingesting caffeine 410 mg daily for at least 7 days modestly increased blood pressure by an average of 4.16/2.41 mmHg (37657). Another meta-analysis of clinical research shows that taking caffeine increases systolic and diastolic blood pressure by approximately 2 mmHg when compared with control. Preliminary subgroup analyses suggest that caffeine may increase blood pressure more in males or at doses over 400 mg (112738).
When used prior to intensive exercise, caffeine can increase systolic blood pressure by 7-8 mmHg (38308). The blood pressure-raising effects of caffeine are greater during stress (36479,38334) and after caffeine-abstinence of at least 24 hours (38241).
Epidemiological research suggests there is no association of caffeine consumption with incidence of hypertension (38190). Habitual coffee consumption also doesn't seem to be related to hypertension, but habitual consumption of sugared or diet cola is associated with development of hypertension (13739).
Epidemiological research has found that regular caffeine intake of up to 400 mg daily is not associated with increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453,103708), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806). One clinical trial shows that in adults with diagnosed heart failure, consumption of 500 mg of coffee does not result in an increased risk for arrhythmia during exercise (95950). However, caffeine intake may pose a greater cardiovascular risk to subjects that are not regular users of caffeine. For example, in one population study, caffeinated coffee consumption was associated with an increased risk of ischemic stroke in subjects that don't regularly drink coffee (38102). In a population study in Japanese subjects, caffeine-containing medication use was modestly associated with hemorrhagic stroke in adults that do not consume caffeine regularly (91059).
The most common side effect of caffeine in neonates receiving caffeine for apnea is tachycardia (98807).
Dermatologic ...There are several case reports of urticaria after caffeine ingestion (36546,36448,36475).
Endocrine
...Some evidence shows caffeine is associated with fibrocystic breast disease or breast cancer in females; however, this is controversial since findings are conflicting (8043,108806).
Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Clinical research in healthy adults shows that an increase consumption of caffeine results in increased insulin resistance (91023).
Gastrointestinal ...Gastrointestinal upset, nausea, diarrhea, abdominal pain, and fecal incontinence may occur with caffeine intake (36466,37755,37806,37789,37830,38138,38136,38223,95956,95963). Also, caffeine may cause feeding intolerance and gastrointestinal irritation in infants (6023). Perioperative caffeine during cardiopulmonary bypass surgery seems to increase the rate of postoperative nausea and vomiting (97451). Caffeine and coffee consumption have been associated with an increase in the incidence of heartburn (37545,37575,38251,38259,38267) and gastrointestinal esophageal reflux disease (GERD) (38329,37633,37631,37603).
Genitourinary ...Caffeine, a known diuretic, may increase voiding, give a sense of urgency, and irritate the bladder (37874,37961,104580). In men with lower urinary tract symptoms, caffeine intake increased the risk of interstitial cystitis/painful bladder syndrome (38115). Excessive caffeine consumption may worsen premenstrual syndrome. Consumption of up to 10 cups of caffeinated drinks daily was associated with increased severity of premenstrual syndrome (38177). Finally, population research shows that exposure to caffeine was not associated with an increased risk of endometriosis (91035).
Immunologic ...Caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Caffeine can induce or exacerbate muscular tremors (38136,37673,38161).
There has also been a report of severe rhabdomyolysis in a healthy 40-year-old patient who consumed an energy drink containing 400 mg of caffeine (4 mg/kg) and then participated in strenuous weightlifting exercise (108818).
Epidemiological evidence regarding the relationship between caffeine use and the risk for osteoporosis is contradictory. Caffeine can release calcium from storage sites and increase its urinary excretion (2669,10202,11317,111489). Females with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake, less than 300 mg daily, does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317). Premature infants treated with intravenous caffeine for apnea of prematurity, have a lower bone mineral content compared with infants who are not treated with caffeine, especially when treatment extends beyond 14 days (111489).
Neurologic/CNS ...Caffeine can cause headaches, anxiety, jitteriness, restlessness, and nervousness (36466,37694,37755,37806,37865,37830,37889,38223,95952). In adolescents, there is an inverse correlation between the consumption of caffeine and various measurements of cognitive function (104579). Insomnia is a frequent adverse effect in children (10755). Caffeine may result in insomnia and sleep disturbances in adults as well (36445,36483,36512,36531,37598,37795,37819,37862,37864,37890)(37968,37971,38091,38242,91022,92952). Additionally, caffeine may exacerbate sleep disturbances in patients with acquired immunodeficiency syndrome (AIDS) (10204). Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, temporary loss of consciousness, and hospitalization requiring life support has been associated with the combined use of ephedra and caffeine (2729). Finally, epidemiological research suggests that consuming more than 190 mg of caffeine daily is associated with an earlier onset of Huntington disease by 3.6 years (91078).
Ocular/Otic
...In individuals with glaucoma, coffee consumption and caffeine intake has been found to increase intraocular pressure (8540,36464,36465,37670).
The magnitude of this effect seems to depend on individual tolerance to caffeine. Some research in healthy young adults shows that caffeine increases intraocular pressure to a greater degree in low-consumers of caffeine (i.e., 1 cup of coffee or less daily) when compared to high-consumers (i.e., those consuming 2 cups of coffee or more daily) (100371). The peak increase of intraocular pressure seems to occur at about 1.5 hours after caffeine ingestion, and there is no notable effect 4 hours after ingestion (36462,100371).
Oncologic ...Most human studies which have examined caffeine or methylxanthine intake have found that they do not play a role in the development of various cancers, including breast, ovarian, brain, colon, rectal, or bladder cancer (37641,37737,37775,37900,38050,38169,38220,91054,91076,108806).
Psychiatric
...Caffeine may lead to habituation and physical dependence (36355,36453,36512,36599), with amounts as low as 100 mg daily (36355,36453).
An estimated 9% to 30% of caffeine consumers could be considered addicted to caffeine (36355). Higher doses of caffeine have caused nervousness, agitation, anxiety, irritability, delirium, depression, sleep disturbances, impaired attention, manic behavior, psychosis and panic attacks (36505,37717,37818,37839,37857,37982,38004,38017,38028,38072)(38079,38138,38306,38325,38331,38332,97464). Similar symptoms have been reported in a caffeine-naïve individual experiencing fatigue and dehydration after a dose of only 200 mg, with resolution of symptoms occurring within 2 hours (95952).
Withdrawal: The existence or clinical importance of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Headache is the most common symptom, due to cerebral vasodilation and increased blood flow (37769,37991,37998). Other researchers suggest symptoms such as tiredness and fatigue, decreased energy, alertness and attentiveness, drowsiness, decreased contentedness, depressed mood, difficulty concentration, irritability, and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms typically occur 12-24 hours after the last dose of caffeine and peak around 48 hours (37769,36600). Symptoms may persist for 2-9 days. Withdrawal symptoms such as delirium, nausea, vomiting, rhinorrhea, nervousness, restlessness, anxiety, muscle tension, muscle pains, and flushed face have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839). In a case report, caffeine consumption of 560 mg daily was associated with increased suicidality (91082).
Renal ...Data on the relationship between caffeine intake and kidney stones are conflicting. Some clinical research shows that caffeine consumption may increase the risk of stone formation (37634,111498), while other research shows a reduced risk with increasing caffeine intakes (111498). A meta-analysis of 7 studies found that overall, there is an inverse relationship, with a 32% decrease in the risk of kidney stones between the lowest and highest daily intakes of caffeine (111498).
Other ...People with voice disorders, singers, and other voice professionals are often advised against the use of caffeine; however, this recommendation has been based on anecdotal evidence. One small exploratory study suggests that caffeine ingestion may adversely affect subjective voice quality, although there appears to be significant intra-individual variability. Further study is necessary to confirm these preliminary findings (2724).
General ...No adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, guggul seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, bloating, diarrhea, headache, nausea, unpleasant taste, and vomiting. Allergic and non-allergic skin reactions.
Topically: Allergic contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Rhabdomyolysis.
Dermatologic
...Orally, guggul can cause hypersensitivity reactions including rash and pruritus (10371,54457).
Guggul can also cause nonallergic adverse skin reactions. The risk of skin reactions appears to be dose-dependent. In one study, the incidence of skin reactions was 3% with a dosage of 1000 mg three times daily, compared with 15% with a dosage of 2000 mg three times daily. The severity of the reactions ranged from pruritus to swelling and erythema of the face to bullous lesion on the lower legs associated with headaches, myalgias, and pruritus (13662).
Topically, guggul can cause allergic contact dermatitis (54464,54467). Also, in a small clinical study, one patient using a cream containing aqueous extracts of guggul and Allium ampeloprasum as well as sesame oil complained of rash at the application site (105751). It is unclear if this reaction was due to guggul, other ingredients, or other factors.
Gastrointestinal ...Orally, guggul can cause nausea, vomiting, loose stools, diarrhea, belching, bloating, hiccups, and mild gastrointestinal discomfort (3267,8155,8158,10371,52033,54492).
Hepatic ...A case of severe hypertransaminasemia has been reported for a 63-year-old female who took a specific product (Equisterol) containing guggulsterone and red yeast rice extract daily for 6 months. Liver function normalized after discontinuing the supplement. It is unclear if the adverse effect was due to guggulsterone, red yeast, or the combination. However, the patient had previously developed hepatotoxicity while taking lovastatin, and red yeast contains monacolin K, which is identical to lovastatin (54477). Also, a case of acute liver failure requiring liver transplantation has been reported for a previously healthy young female who used a mixed-ingredient dietary supplement containing extracts of green tea, guggul, and usnic acid. It is unclear if the hepatotoxicity was due to guggul or other ingredients; green tea has been associated with hepatotoxicity (54027).
Immunologic
...Orally, guggul can cause hypersensitivity reactions including rash and pruritus (10371,54457).
In a small clinical study, two adults with hyperlipidemia developed a hypersensitivity rash, one with facial edema, within minutes of oral administration of a methanolic extract of guggul, together with Terminalia extract (105741). It is unclear if this reaction was due to guggul, Terminalia, or other factors.
Topically, guggul can cause allergic contact dermatitis (54464,54467).
Musculoskeletal ...There is one case of rhabdomyolysis reported in a patient who took guggul 300 mg three times daily. The patient developed hemoglobinuria within 2 weeks of starting guggul in addition to increased alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase, creatine kinase, and myoglobinemia. The patient did not have any muscular symptoms. The patient's condition improved when guggul was discontinued. The patient had a history of developing elevated creatine kinase levels after taking simvastatin; however, the patient was not taking a statin at the time of this episode of rhabdomyolysis (13029).
Neurologic/CNS ...Orally, guggul can cause headaches (3267,8155,8158,10371,42692,49583). Less commonly, guggul may cause restlessness and apprehension (49583,54492).
General
...Orally, willow bark seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, dyspepsia, heartburn, and vomiting. May cause itching and rash in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Gastrointestinal bleeding and renal impairment. May cause serious allergic reactions, including anaphylaxis, in people who are allergic to aspirin.
Cardiovascular ...In one clinical trial, a single patient withdrew from the study investigating oral willow bark due to blood pressure instability that the authors determined was 'possibly' related to treatment (12804).
Dermatologic ...Orally, willow bark may cause itching and rash in some people due to allergy (6456,12474,12475,12804,86459).
Gastrointestinal ...Orally, willow bark extract can cause gastrointestinal adverse effects, but these appear to be less frequent than those caused by NSAIDs. Examples include diarrhea, heartburn, vomiting, and dyspepsia (12474,12475,12804,86459). In a case report of a child, severe gastrointestinal bleeding occurred following use of a specific syrup (FreddoBaby), which contained ribwort plantain, licorice, willow bark, black elder, meadowsweet, and propolis. The adverse effect was attributed to salicylate content of the syrup. This product has since been withdrawn from the market (86477).
Immunologic ...Orally, willow bark may cause serious allergic reactions, including anaphylaxis, in people who are allergic to aspirin (10392)
Neurologic/CNS ...Orally, willow bark may cause headache and dizziness (12804). In a clinical trial evaluating a combination product containing willow bark, black cohosh, sarsaparilla, poplar bark, and guaiac wood (Reumalex), severe headaches occurred (35946).
Ocular/Otic ...Orally, symptoms of allergy to willow bark have included swollen eyes (6456).
Renal ...Salicylates can inhibit prostaglandins, which can reduce renal blood flow (12805). Salicin can cause renal papillary necrosis (12806). The risk for toxicity is greater with high acute doses or chronic use (12805).
General
...When used orally in high doses or long-term, yerba mate may be unsafe.
Most Common Adverse Effects:
Orally: Many of the adverse effects of yerba mate can be attributed to its caffeine content, such as diuresis, gastric irritation, insomnia, nausea, nervousness, restlessness, tachycardia, tachypnea, and tremors.
Serious Adverse Effects (Rare):
Orally: Cancer, hyperglycemia, ketosis, metabolic acidosis, sinus tachycardia. These adverse effects are more common with high doses or long-term use.
Cardiovascular
...Orally, yerba mate may cause cardiovascular-related adverse effects due to its caffeine content.
High doses of mate providing 250 mg of caffeine can increase blood pressure. However, this doesn't seem to occur in people who habitually consume caffeine products (2722). Also, epidemiological research suggests that there is no association of caffeine consumption with incidence of hypertension (13739).
Due to its caffeine content, yerba mate may cause other adverse cardiovascular effects when used orally. These effects include tachycardia, quickened respiration, chest pain, premature heartbeat, arrhythmia, and hypertension (11832,11838,13735). Large doses of caffeine can also cause massive catecholamine release and subsequent sinus tachycardia (13734). There is also one report of venous occlusive disease associated with excessive, long-term mate consumption (5614).
Epidemiological research has found that regular caffeine intake of up to 400 mg per day, or approximately 8-10 cups of yerba mate, is not associated with an increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806).
Combining caffeine beverages such as yerba mate with ephedra may theoretically increase the risk of adverse cardiovascular events. There is one report of ischemic stroke in an athlete who consumed ephedra 40-60 mg, creatine monohydrate 6 grams, caffeine 400-600 mg, and a variety of other supplements daily for six weeks (1275).
Endocrine ...Yerba mate contains caffeine. Orally, large doses of caffeine can cause massive catecholamine release and subsequent metabolic acidosis, hyperglycemia, and ketosis (13734). Some evidence shows caffeine is associated with fibrocystic breast disease, breast cancer, and endometriosis in females. However, this is controversial since findings are conflicting (8043). Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Gastrointestinal ...Orally, drinking yerba mate infusions has been associated with nausea and irritation of the stomach or oral mucosa in a small number of patients in one clinical study (86657). Yerba mate contains caffeine. Orally, caffeine can cause gastric irritation, nausea, and vomiting (11832,11838,13735). Caffeine-containing beverages can stimulate gastric secretion in humans, which may potentiate ulcer symptoms (36404). Some believe that long-term use of caffeine can cause withdrawal symptoms following discontinuation of use. However, the existence of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (2723,11839). Gastrointestinal withdrawal symptoms such as nausea and vomiting have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant gastrointestinal symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Hematologic ...Yerba mate contains caffeine. Orally, caffeine can cause hypokalemia (11832,11838,13735).
Immunologic ...Yerba mate contains caffeine. Orally, caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Yerba mate contains caffeine.
Some epidemiological research suggests that caffeine may be associated with an increased risk of osteoporosis, but conflicting evidence exists. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females identified with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake of less than 400 mg per day, or approximately 8-10 cups of yerba mate, does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317,98806).
Some researchers believe that stopping regular use of caffeine may cause withdrawal symptoms such as muscle tension and muscle pains. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839). However, there is a case of withdrawal in a premature neonate following chronic parental drinking of yerba mate (86618). Symptoms included hypertonia in the limbs and brisk tendon reflexes. The authors indicated that high concentrations of caffeine and theobromine were found in the placenta, cord serum, neonatal urine, parental and neonatal hair, meconium, and breast milk. Although symptoms progressively disappeared at 84 hours of age, irritability was still occasionally present at discharge (24 days of age).
Neurologic/CNS
...Orally, drinking yerba mate infusions has been associated with insomnia in a small number of patients in one clinical study (86657).
Yerba mate contains caffeine. Orally, caffeine can cause insomnia, nervousness, headache, anxiety, agitation, jitteriness, restlessness, ringing in the ears, tremors, delirium, and convulsions (11832,11838,13735). Caffeine may also exacerbate sleep disturbances in patients with acquired immunodeficiency syndrome (AIDS) (10204).
There is some concern that stopping regular use of caffeine may cause withdrawal symptoms such as headache, tiredness and fatigue, decreased energy, alertness, and attentiveness, drowsiness, decreased contentedness, depressed mood, difficulty concentrating, irritability, and lack of clear-headedness are typical of caffeine withdrawal (13738). Other symptoms such as delirium, nervousness, restlessness, and anxiety have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839). However, there is a case of withdrawal in a premature neonate following chronic parental drinking of yerba mate (86618). Symptoms included jitteriness and irritability and a high-pitched cry. The authors indicated that high concentrations of caffeine and theobromine were found in the placenta, cord serum, neonatal urine, parental and neonatal hair, meconium, and breast milk. Although symptoms progressively disappeared at 84 hours of age, irritability was still occasionally present at discharge (24 days of age).
Oncologic ...Orally, the prolonged use of yerba mate or use of yerba mate in high doses (typically more than 1-2 liters daily) is associated with an increased risk of cancer, including mouth, esophageal, laryngeal, kidney, bladder, cervical, prostate, and lung cancer (1528,1529,1530,1531,11863,11864,92150,86595,86614,86700,86701). The effect seems to be cumulative and dose dependent. The risk of cancer with yerba mate use seems to increase if it is taken as a warm beverage. In 1991, the International Agency for Research on Cancer (IARC), reported that hot yerba mate drinking is a 2A agent, meaning it is probably carcinogenic for humans (92150). A statement published in 2016 stated there is no conclusive evidence for carcinogenicity when yerba mate is consumed at temperatures that are "not very hot" (95015). Drinking very hot beverages is believed to be a probable cause of esophageal cancer in humans (95015). Concomitant tobacco and alcohol use can increase risk 7-fold (11863).
Pulmonary/Respiratory ...Yerba mate contains caffeine. Orally, caffeine may cause tachypnea-induced respiratory alkalosis (11832,11838,13735). Some researchers think that stopping regular use of caffeine may cause withdrawal symptoms such as runny nose. However, this symptom may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839).
Renal ...Yerba mate contains caffeine. Orally, caffeine may cause diuresis (11832,11838,13735).