Ingredients | Amount Per 1 Tablet |
---|---|
Proprietary Complex
|
902 mg |
(DLPA)
|
|
(Boswellia serrata )
(gum resin)
(BOS-10/BosPure)
(with greater than or equal to 10% AKBA, with less than or equal to 5% Beta-Boswellic Acids, standardized to contain greater than or equal to 70% total organic and Boswellic Acid)
(Boswellia (Boswellia serrata) gum resin extract (Form: standardized to contain greater than or equal to 70% total organic and Boswellic Acid, with greater than or equal to 10% AKBA, with less than or equal to 5% Beta-Boswellic Acids) (Alt. Name: BOS-10/BosPure) PlantPart: gum resin Genus: Boswellia Species: serrata )
|
|
(Curcuma longa )
(rhizome)
(BCM-95, Curcugreen)
(and standardized for Curcuminoid Complex, enhanced with Turmeric essential Oil)
(Curcumin (Curcuma longa) rhizome extract (Form: enhanced with Turmeric essential Oil, and standardized for Curcuminoid Complex (Form: Curcumin, Demethoxycurcumin, and Bisdemethoxycurcumin)) (Alt. Name: BCM-95, Curcugreen) PlantPart: rhizome Genus: Curcuma Species: longa )
|
|
Cellulose powder, Stearic Acid (Alt. Name: C18:0), Silica, Vegetable Source Magnesium Stearate, Croscarmellose Sodium, Ethylcellulose
Below is general information about the effectiveness of the known ingredients contained in the product Curaphen Extra Strength. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Curaphen Extra Strength. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Boswellia serrata extract in doses up to 1000 mg daily has been safely used in several clinical trials lasting up to 6 months (1708,1709,12432,12434,12438,17948,17949,17950,91379)(100699,100713,102089,109568). Boswellia serrata extract has been used with apparent safety at a dose of 2400 mg for up to 1 month (102092).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of using Boswellia serrata in medicinal amounts; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Nattokinase is a natural component of the soy food natto. It has been routinely consumed in Japan for hundreds of years (12072,12073).
POSSIBLY SAFE ...when used orally for medicinal purposes. Nattokinase has been used with apparent safety in doses of 2000 fibrinolytic units daily for up to 3 years or 10,800 fibrinolytic units daily for up to 12 months (64835,92312,106406,111252).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when L-phenylalanine is consumed in amounts typically found in foods (11120).
POSSIBLY SAFE ...when L-phenylalanine is used orally in doses up to 100 mg/kg daily for up to 3 months (2463,2464,2466,2467,2469). ...when D-phenylalanine is used orally in doses up to 1 gram daily for up to 4 weeks, or as a single dose of 4-10 grams (2455,2456,2459,68795,104792). ...when DL-phenylalanine is used orally in doses up to 200 mg daily for up to 4 weeks (2468,68795,68825). ...when phenylalanine cream is applied topically, short-term (2461,92704).
PREGNANCY: LIKELY SAFE
when L-phenylalanine is consumed in amounts typically found in foods by pregnant patients with normal phenylalanine metabolism (2020,11120).
PREGNANCY: UNSAFE
when L-phenylalanine is consumed in amounts typically found in foods by pregnant patients with high serum phenylalanine concentrations, such as those with phenylketonuria (PKU).
Serum levels of phenylalanine greater than 360 micromol/L increase the risk of birth defects (1402,11468). Experts recommend that patients with high phenylalanine serum concentrations follow a low phenylalanine diet for at least 20 weeks prior to conception to decrease the risk for birth defects (1402).
There is insufficient reliable information available about the safety of L-phenylalanine when taken by mouth in large doses during pregnancy; avoid using.
There is insufficient reliable information available about the safety of oral D-phenylalanine during pregnancy; avoid using.
LACTATION: LIKELY SAFE
when L-phenylalanine is consumed in amounts typically found in foods by breast-feeding patients with normal phenylalanine metabolism (2020,11120).
There is insufficient reliable information available about the safety of L-phenylalanine when taken by mouth in medicinal amounts during lactation; avoid using. There is insufficient reliable information available about the safety of oral D-phenylalanine during lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Turmeric products providing up to 8 grams of curcumin have been safely used for up to 2 months (10453,11144,11150,17953,79085,89720,89721,89724,89728,101347)(81036,101349,107110,107116,107117,107118,107121,109278,109283). Turmeric in doses up to 3 grams daily has been used with apparent safety for up to 3 months (102350,104146,104148,113357). ...when used topically and appropriately (11148).
POSSIBLY SAFE ...when used as an enema, short-term. Turmeric extract in water has been used as a daily enema for up to 8 weeks (89729). ...when used topically as a mouthwash, short-term. A mouthwash containing 0.05% turmeric extract and 0.05% eugenol has been used safely twice daily for up to 21 days (89723).
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in food.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts; turmeric might stimulate the uterus and increase menstrual flow (12).
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food.
There is insufficient reliable information available about the safety of using turmeric in medicinal amounts during lactation.
Below is general information about the interactions of the known ingredients contained in the product Curaphen Extra Strength. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, Boswellia serrata might increase the levels of CYP1A2 substrates.
Details
In vitro research shows that Boswellia serrata gum resin inhibits CYP1A2 enzymes (21178).
|
Theoretically, Boswellia serrata might increase the levels of CYP2C19 substrates.
Details
In vitro research shows that Boswellia serrata gum resin inhibits CYP2C19 enzymes (21178).
|
Theoretically, Boswellia serrata might increase the levels of CYP2C9 substrates.
Details
In vitro research shows that Boswellia serrata gum resin inhibits CYP2C9 enzymes (21178).
|
Theoretically, Boswellia serrata might increase the levels of CYP2D6 substrates.
Details
In vitro research shows that Boswellia serrata gum resin inhibits CYP2D6 enzymes (21178).
|
Theoretically, Boswellia serrata might increase the levels of CYP3A4 substrates.
Details
In vitro research shows that Boswellia serrata gum resin inhibits CYP3A4 enzymes (21178).
|
Theoretically, Boswellia serrata might alter the effects of immunosuppressive drugs.
Details
Some in vitro research suggests that Boswellia serrata extracts might inhibit mediators of autoimmune disorders such as leukotrienes and reduce production of antibodies and cell-mediated immunity (12432,12435,12437,12438). However, other in vitro research suggests that, when coupled with calcium ions, boswellic acids containing the keto group have immunostimulant properties within specific cell signaling pathways (21180).
|
Nattokinase might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
Details
|
Theoretically, nattokinase might increase the risk of hypotension when used with antihypertensive drugs.
Details
|
Concomitant intake of phenylalanine may reduce the intestinal absorption of baclofen.
Details
Phenylalanine and baclofen share the same intestinal carrier for absorption; phenylalanine competitively inhibits the absorption of baclofen, reducing its plasma levels (23788).
|
Phenylalanine, especially in high doses, can reduce the effectiveness of levodopa.
Details
|
Theoretically, concomitant use of L-phenylalanine and non-selective MAOIs might increase the risk of hypertensive crisis.
Details
L-phenylalanine is metabolized to tyrosine (2052,9949). Some evidence suggests that L-phenylalanine, given with the non-selective MAOI pargyline, might prevent the elimination of tyramine, increasing the risk of hypertensive crisis (2021). However, this was not reported in a small number of patients when using L-phenylalanine with the partially selective MAO-B inhibitor, selegiline (2469).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research suggests that curcumin, a constituent of turmeric, inhibits mechlorethamine-induced apoptosis of breast cancer cells by up to 70%. Also, animal research shows that curcumin inhibits cyclophosphamide-induced tumor regression (96126). However, some in vitro research shows that curcumin does not affect the apoptosis capacity of etoposide. Also, other laboratory research suggests that curcumin might augment the cytotoxic effects of alkylating agents. Reasons for the discrepancies may relate to the dose of curcumin and the specific chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have on alkylating agents.
|
Taking turmeric with amlodipine may increase levels of amlodipine.
Details
Animal research shows that giving amlodipine 1 mg/kg as a single dose following the use of turmeric extract 200 mg/kg daily for 2 weeks increases the maximum concentration and area under the curve by 53% and 56%, respectively, when compared with amlodipine alone (107113). Additional animal research shows that taking amlodipine 1 mg/kg with a curcumin 2 mg/kg pretreatment for 10 days increases the maximum concentration and area under the curve by about 2-fold when compared with amlodipine alone (103099).
|
Turmeric may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Curcumin, a constituent of turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271). Furthermore, two case reports have found that taking turmeric along with warfarin or fluindione was associated with an increased international normalized ratio (INR) (89718,100906). However, one clinical study in healthy volunteers shows that taking curcumin 500 mg daily for 3 weeks, alone or with aspirin 100 mg, does not increase antiplatelet effects or bleeding risk (96137). It is possible that the dose of turmeric used in this study was too low to produce a notable effect.
|
Theoretically, taking turmeric with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Animal research and case reports suggest that curcumin, a turmeric constituent, can reduce blood glucose levels in patients with diabetes (79692,79984,80155,80313,80315,80476,80553,81048,81219). Furthermore, clinical research in adults with type 2 diabetes shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg decreased postprandial glucose levels for up to 24 hours when compared with glyburide alone, despite the lack of a significant pharmacokinetic interaction (96133). Another clinical study in patients with diabetes on hemodialysis shows that taking curcumin 80 mg daily for 12 weeks can reduce blood glucose levels when compared with placebo (104149).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro and animal research shows that curcumin, a constituent of turmeric, inhibits doxorubicin-induced apoptosis of breast cancer cells by up to 65% (96126). However, curcumin does not seem to affect the apoptosis capacity of daunorubicin. In fact, some research shows that curcumin might augment the cytotoxic effects of antitumor antibiotics, increasing their effectiveness. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effects, if any, antioxidants such as turmeric have on antitumor antibiotics.
|
Theoretically, turmeric might increase or decrease levels of drugs metabolized by CYP1A1. However, research is conflicting.
Details
|
Theoretically, turmeric might increase levels of drugs metabolized by CYP1A2. However, research is conflicting.
Details
|
Turmeric might increase levels of drugs metabolized by CYP3A4.
Details
In vitro and animal research show that turmeric and its constituents curcumin and curcuminoids inhibit CYP3A4 (21497,21498,21499). Also, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking turmeric and cancer medications that are CYP3A4 substrates, including everolimus, ruxolitinib, ibrutinib, and palbociclib, and bortezomib (111644). In another case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels after consuming turmeric powder at a dose of 15 or more spoonfuls daily for ten days prior. It was thought that turmeric increased levels of tacrolimus due to CYP3A4 inhibition (93544).
|
Theoretically, turmeric might increase blood levels of oral docetaxel.
Details
Animal research suggests that the turmeric constituent, curcumin, enhances the oral bioavailability of docetaxel (80999). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Theoretically, large amounts of turmeric might interfere with hormone replacement therapy through competition for estrogen receptors.
Details
In vitro research shows that curcumin, a constituent of turmeric, displaces the binding of estrogen to its receptors (21486).
|
Theoretically, taking turmeric and glyburide in combination might increase the risk of hypoglycemia.
Details
Clinical research shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg increases blood levels of glyburide by 12% at 2 hours after the dose in patients with type 2 diabetes. While maximal blood concentrations of glyburide were not affected, turmeric modestly decreased postprandial glucose levels for up to 24 hours when compared to glyburide alone, possibly due to the hypoglycemic effect of turmeric demonstrated in animal research (96133).
|
Theoretically, turmeric might increase the risk of liver damage when taken with hepatotoxic drugs.
Details
|
Theoretically, turmeric might increase the effects of losartan.
Details
Research in hypertensive rats shows that taking turmeric can increase the hypotensive effects of losartan (110897).
|
Theoretically, turmeric might have additive effects when used with hepatotoxic drugs such as methotrexate.
Details
In one case report, a 39-year-old female taking methotrexate, turmeric, and linseed oil developed hepatotoxicity (111644).
|
Theoretically, turmeric might increase the effects and adverse effects of norfloxacin.
Details
Animal research shows that taking curcumin, a turmeric constituent, can increase blood levels of orally administered norfloxacin (80863).
|
Theoretically, turmeric might increase blood levels of OATP4C1 substrates.
Details
In vitro research shows that the turmeric constituent curcumin competitively inhibits OATP4C1 transport. This transporter is expressed in the kidney and facilitates the renal excretion of certain drugs (113337). Theoretically, taking turmeric might decrease renal excretion of OATP substrates.
|
Theoretically, turmeric might increase the absorption of P-glycoprotein substrates.
Details
|
Theoretically, turmeric might alter blood levels of paclitaxel, although any effect may not be clinically relevant.
Details
Clinical research in adults with breast cancer receiving intravenous paclitaxel suggests that taking turmeric may modestly alter paclitaxel pharmacokinetics. Patients received paclitaxel on day 1, followed by either no treatment or turmeric 2 grams daily from days 2-22. Pharmacokinetic modeling suggests that turmeric reduces the maximum concentration and area under the curve of paclitaxel by 12.1% and 7.7%, respectively. However, these changes are not likely to be considered clinically relevant (108876). Conversely, animal research suggests that curcumin, a constituent of turmeric, enhances the oral bioavailability of paclitaxel (22005). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Turmeric might increase the effects and adverse effects of sulfasalazine.
Details
Clinical research shows that taking the turmeric constituent, curcumin, can increase blood levels of sulfasalazine by 3.2-fold (81131).
|
Turmeric might increase the effects and adverse effects of tacrolimus.
Details
In one case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels of 29 ng/mL. The patient previously had tacrolimus levels within the therapeutic range at 9.7 ng/mL. Ten days prior to presenting at the emergency room the patient started consumption of turmeric powder at a dose of 15 or more spoonfuls daily. It was thought that turmeric increased levels of tacrolimus due to cytochrome P450 3A4 (CYP3A4) inhibition (93544). In vitro and animal research show that turmeric and its constituent curcumin inhibit CYP3A4 (21497,21498,21499).
|
Turmeric may reduce the absorption of talinolol in some situations.
Details
Clinical research shows that taking curcumin for 6 days decreases the bioavailability of talinolol when taken together on the seventh day (80079). The clinical significance of this effect is unclear.
|
Theoretically, turmeric might reduce the levels and clinical effects of tamoxifen.
Details
In a small clinical trial in patients with breast cancer taking tamoxifen 20-30 mg daily, adding curcumin 1200 mg plus piperine 10 mg three times daily reduces the 24-hour area under the curve of tamoxifen and the active metabolite endoxifen by 12.8% and 12.4%, respectively, as well as the maximum concentrations of tamoxifen, when compared with tamoxifen alone. However, in the absence of piperine, the area under the curve for endoxifen and the maximum concentration of tamoxifen were not significantly reduced. Effects were most pronounced in patients who were extensive cytochrome P450 (CYP) 2D6 metabolizers (107123).
|
Turmeric has antioxidant effects. There is some concern that this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research shows that curcumin, a constituent of turmeric, inhibits camptothecin-induced apoptosis of breast cancer cells by up to 71% (96126). However, other in vitro research shows that curcumin augments the cytotoxic effects of camptothecin. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agents. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have.
|
Turmeric might increase the risk of bleeding with warfarin.
Details
One case of increased international normalized ratio (INR) has been reported for a patient taking warfarin who began taking turmeric. Prior to taking turmeric, the patient had stable INR measurements. Within a few weeks of starting turmeric supplementation, the patient's INR increased to 10 (100906). Additionally, curcumin, the active constituent in turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271), which may produce additive effects when taken with warfarin.
|
Below is general information about the adverse effects of the known ingredients contained in the product Curaphen Extra Strength. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, Boswellia serrata extract is generally well-tolerated.
For information on the safety of Boswellia serrata when applied topically or used as aromatherapy, see the Frankincense monograph.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, headache, heartburn, itching, nausea.
Serious Adverse Effects (Rare):
Orally: Large amounts of Boswellia serrata gum resin can cause bezoar formation.
Dermatologic ...Orally, Boswellia serrata extract (5-Loxin) has been associated with itching at doses of 100-250 mg daily (17948).
Gastrointestinal ...Orally, Boswellia serrata extract may cause diarrhea, nausea, abdominal pain, and heartburn (1708,12432,12438,17948,17949,17950,21149,109567). A case of a large gastrointestinal bezoar has been reported in a 17-year-old female who chewed and swallowed large quantities of boswellia gum resin (Boswellia species not specified) for celiac disease (36914).
Musculoskeletal ...Orally, Boswellia serrata extract (5-Loxin) has been associated with one case of foot edema and four cases of generalized weakness in one clinical study (17948).
Neurologic/CNS ...Orally, Boswellia serrata extract may cause dizziness, headache, and vertigo. In one clinical study, nearly 11% of patients taking a specific Boswellia serrata extract (K-Vie) reported headache. Dizziness and vertigo were also reported, but at lower rates (109567). In another study, headache was reported in one patient taking a specific Boswellia serrata extract (5-Loxin) (17948).
Psychiatric ...Orally, one case of mania is reported in a 73-year-old male who took Boswellia powder mixed with honey for 3 days. The patient recovered after hospitalization and treatment with olanzapine (110526).
General
...Orally, nattokinase is generally well tolerated.
Preliminary clinical trials suggest that the incidence of adverse effects with nattokinase is similar to that with placebo.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis, hemorrhage.
Hematologic ...Orally, nattokinase has been associated with rare reports of hemorrhage (64834,109551). A case of intracranial hemorrhage (ICH) has been reported in a 52-year-old female who took nattokinase while taking low-dose aspirin for secondary prevention of ischemic stroke. Seven days after initiating nattokinase 400 mg daily, the patient reported vertigo and unsteady gait and was diagnosed with an acute cerebellar hemorrhage. It was suggested that the thrombolytic and anticoagulant effects of nattokinase combined with aspirin's antiplatelet effects contributed to the ICH (64834). In another case, a 92-year-old female taking nattokinase daily (dose unknown) for atrial fibrillation presented to the hospital after a fall. The patient was on no other anticoagulant or antiplatelet drugs. Abdominal CT showed a ruptured hepatic cystic lesion and intraperitoneal hemorrhage, which was difficult to stop despite several transfusions of red blood cells and fresh frozen plasma. The authors attributed the bleeding complications, in part, to nattokinase use (109551).
Immunologic ...Orally, nattokinase can cause hypersensitivity reactions, including anaphylaxis, in individuals sensitive to natto (109552,111253). A case series examining hypersensitivity reactions to natto shows that the causative allergen can be either nattokinase or polygamma glutamic acid (PGA), both of which are found in the sticky substance surrounding natto soybeans. In patients with hypersensitivity to nattokinase, specifically, symptoms occurred within 2 hours after ingestion, were limited to the pharynx and larynx, and included swelling, tightness, and itching in the throat and lips and dyspnea. All patients with nattokinase sensitivity shared a history of atopic dermatitis (111253).
General
...Orally, L-phenylalanine and D-phenylalanine are generally well tolerated when used in typical doses.
Most Common Adverse Effects:
Orally: Anxiety, constipation, headache, heartburn, insomnia, nausea, and sedation.
Topically: Burning, erythema, and itching.
Cardiovascular ...One patient in a small case series developed extrasystoles after 10 days of treatment with DL-phenylalanine, but this resolved on the 12th day of treatment without discontinuing phenylalanine (68825).
Dermatologic ...Topically, erythema, itching, and burning have been reported in some patients using an undecylenoyl phenylalanine 2% cream for treatment of age spots (92704).
Gastrointestinal ...Orally, constipation, heartburn, and nausea has been reported in some patients taking phenylalanine (2463,68827,68829,68830).
Neurologic/CNS
...Orally, headaches, which are typically transient and do not require treatment or dosage reduction, have been reported during the first 10 days of treatment with L-, D-, and DL-phenylalanine (68795,68825,68827,68829).
Transient vertigo has also been reported with D- and DL-phenylalanine (68795).
In patients with Parkinson disease, taking DL-phenylalanine, especially in high doses, interferes with levodopa transport into the brain, causing increased rigidity, tremor, and occurrence of the on-off phenomenon. Akinesia has been reported more rarely (3291,3292,3293,3294,68828). In patients with schizophrenia, taking a single dose of L-phenylalanine 100 mg/kg has been associated with worsening of medication-induced tardive dyskinesia (2457).
Psychiatric ...Orally, L-phenylalanine has been associated with anxiety, insomnia, and, more rarely, hypomania (68827,68829). DL-phenylalanine has been associated with fatigue and sedation (9951).
General
...Orally and topically, turmeric is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, dyspepsia, diarrhea, distension, gastroesophageal reflux, nausea, and vomiting.
Topically: Curcumin, a constituent of turmeric, can cause contact urticaria and pruritus.
Cardiovascular ...Orally, a higher dose of turmeric in combination with other ingredients has been linked to atrioventricular heart block in one case report. It is unclear if turmeric caused this adverse event or if other ingredients or a contaminant were the cause. The patient had taken a combination supplement containing turmeric 1500-2250 mg, black soybean 600-900 mg, mulberry leaves, garlic, and arrowroot each about 300-450 mg, twice daily for one month before experiencing atrioventricular heart block. Heart rhythm normalized three days after discontinuation of the product. Re-administration of the product resulted in the same adverse effect (17720).
Dermatologic ...Following occupational and/or topical exposure, turmeric or its constituents curcumin, tetrahydrocurcumin, or turmeric oil, can cause allergic contact dermatitis (11146,79270,79470,79934,81410,81195). Topically, curcumin can also cause rash or contact urticaria (79985,97432,112117). In one case, a 60-year-old female, with no prior reactivity to regular oral consumption of turmeric products, developed urticaria after topical application of turmeric massage oil (97432). A case of pruritus has been reported following topical application of curcumin ointment to the scalp for the treatment of melanoma (11148). Yellow discoloration of the skin has been reported rarely in clinical research (113356). Orally, curcumin may cause pruritus, but this appears to be relatively uncommon (81163,97427,104148). Pitting edema may also occur following oral intake of turmeric extract, but the frequency of this adverse event is less common with turmeric than with ibuprofen (89720). A combination of curcumin plus fluoxetine may cause photosensitivity (89728).
Gastrointestinal ...Orally, turmeric can cause gastrointestinal adverse effects (107110,107112,112118), including constipation (81149,81163,96135,113355), flatulence and yellow, hard stools (81106,96135), nausea and vomiting (10453,17952,89720,89728,96127,96131,96135,97430,112117,112118), diarrhea or loose stool (10453,17952,18204,89720,96135,110223,112117,112118), dyspepsia (17952,89720,89721,96161,112118), gastritis (89728), distension and gastroesophageal reflux disease (18204,89720), abdominal fullness and pain (81036,89720,96161,97430), epigastric burning (81444), and tongue staining (89723).
Hepatic
...Orally, turmeric has been associated with liver damage, including non-infectious hepatitis, cholestasis, and hepatocellular liver injury.
There have been at least 70 reports of liver damage associated with taking turmeric supplements for at least 2 weeks and for up to 14 months. Most cases of liver damage resolved upon discontinuation of the turmeric supplement. Sometimes, turmeric was used concomitantly with other supplements and medications (99304,102346,103094,103631,103633,103634,107122,109288,110221). The Drug-Induced Liver Injury Network (DILIN) has identified 10 cases of liver injury which were considered to be either definitely, highly likely, or probably associated with turmeric; none of these cases were associated with the use of turmeric in combination with other potentially hepatotoxic supplements. Most patients (90%) presented with hepatocellular pattern of liver injury. The median age of these case reports was 56 years and 90% identified as White. In these case reports, the carrier frequency on HLAB*35:01 was 70%, which is higher than the carrier frequency found in the general population. Of the ten patients, 5 were hospitalized and 1 died from liver injury (109288).
It is not clear if concomitant use with other supplements or medications contributes to the risk for liver damage. Many case reports did not report turmeric formulation, dosing, or duration of use (99304,103094,103631,103634,109288). However, at least 10 cases involved high doses of curcumin (250-1812.5 mg daily) and the use of highly bioavailable formulations such as phytosomal curcumin and formulations containing piperine (102346,103633,107122,109288,110221).
Neurologic/CNS ...Orally, the turmeric constituent curcumin can cause vertigo, but this effect seems to be uncommon (81163).
Psychiatric ...Orally, the turmeric constituent curcumin or a combination of curcumin and fluoxetine can cause giddiness, although this event seems to be uncommon (81206,89728).
Renal ...Orally, turmeric has been linked to one report of kidney failure, although the role of turmeric in this case is unclear. A 69-year-old male developed kidney failure related to calcium oxalate deposits in the renal tubules following supplementation with turmeric 2 grams daily for 2 years as an anti-inflammatory for pelvic pain. While turmeric is a source of dietary oxalates, pre-existing health conditions and/or chronic use of antibiotics may have contributed to the course of disease (113343).
Other ...There is a single case report of death associated with intravenous use of turmeric. However, analysis of the treatment vial suggests that the vial contained only 0.023% of the amount of curcumin listed on the label. Also, the vial had been diluted in a solution of ungraded polyethylene glycol (PEG) 40 castor oil that was contaminated with 1.25% diethylene glycol. Therefore the cause of death is unknown but is unlikely to be related to the turmeric (96136).