Ingredients | Amount Per Serving |
---|---|
(Na)
(Sodium Chloride)
(Sodium (Form: as Sodium Chloride) )
|
220 mg |
(65%)
(HydroMax Glycerol powder Note: 65% )
|
2.5 Gram(s) |
1 Gram(s) | |
(Beta vulgaris )
(root)
|
1 Gram(s) |
750 mg |
Citric Acid, Malic Acid, Erythritol, Natural & Artificial flavors, Silicon Dioxide (Alt. Name: SiO2), Sucralose
Below is general information about the effectiveness of the known ingredients contained in the product Pumped-AF Strawberry Watermelon. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Pumped-AF Strawberry Watermelon. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Agmatine sulfate has been used with apparent safety at doses up to 2.67 grams daily for up to 2 months and 3.56 grams daily for up to 3 weeks (94736,111144).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes, short term. Beetroot juice has been safely used in clinical trials in doses of up to 500 mL daily for up to 7 days and a beetroot-based nutritional gel has been used safely in doses of up to 100 grams daily for 8 days (94461,94462,94464,100149,100152,100153).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of beets used medicinally during pregnancy and breast-feeding.
LIKELY SAFE ...when used orally and appropriately, short-term. Creatine supplementation appears to be safe when used at loading doses of up to 25 grams daily or 0.3 grams/kg daily for up to 14 days in healthy adults (1367,2100,2101,3996,4569,10064,15354,15520,46570,46587)(46673,46688,46719,46753,46801,103278,103279,108336). Creatine supplementation also appears to be safe when used at maintenance doses of 4-5 grams daily for up to 18 months (2101,4578,15353,15354,15520,46587,46673,46690,46753,46838,102164,103278,108336).
POSSIBLY SAFE ...when used orally and appropriately, long-term. Creatine supplementation has been safely used at doses of up to 10 grams daily for up to 5 years in some preliminary clinical research (1367,3996). There is insufficient reliable information available about the safety of creatine when used topically.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Creatine supplementation appears to be safe when used in appropriate doses in infants and children. Creatine 3-5 grams daily for 2-6 months has been safely used in children 5-18 years of age (6182,46596,46739,46841). Creatine 2 grams daily for 6 months has been safely used in children 2-5 years of age (46841). Additionally, weight-based dosing of creatine 0.1-0.4 grams/kg daily in infants and children or 4.69 grams/m2 in children weighing over 40 kg has been used safely for up to 6 months (46623,46629,46694,46759,104672).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used rectally and appropriately. Glycerol rectal suppositories and enemas are approved by the US Food and Drug Administration (FDA) for over-the-counter use to treat occasional constipation (15,272). ...when used topically and appropriately as a lotion, emulsion, or humectant (15,272,93754,93758,93759,99164).
POSSIBLY SAFE ...when used orally, short-term. Glycerol has been used with apparent safety in clinical trials at doses of up to 1.5 grams/kg (2474,2475,99162).
POSSIBLY UNSAFE ...when used intravenously. While some research suggests that intravenous glycerol can be safely administered for two consecutive days twice monthly for up to 6 months (106649), in another study, hemolysis was reported in 98% of patients treated with intravenous glycerol for acute ischemic stroke (2482).
CHILDREN: LIKELY SAFE
when used rectally and appropriately.
Glycerol rectal suppositories and enemas are approved by the US FDA for over-the-counter use to treat occasional constipation in children 2 years of age and older (15,272). ...when used topically and appropriately as an emulsion or humectant in children 1 month of age and older (15,272,93756).
CHILDREN: POSSIBLY SAFE
when used orally, short-term.
Glycerol has been used with apparent safety in clinical trials in children 2 months to 16 years of age at doses of 1.5 gram/kg, up to a maximum dose of 25 grams, taken every 6 hours (93762,93763).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
Below is general information about the interactions of the known ingredients contained in the product Pumped-AF Strawberry Watermelon. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, agmatine might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
Animal and in vitro research suggest that agmatine has mild hypoglycemic effects (94734).
|
Theoretically, agmatine might increase the risk of hypotension when taken with antihypertensive drugs.
Details
Animal research suggests that agmatine can modestly decrease heart rate and blood pressure (94734).
|
Theoretically, beet might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research suggests that beet induces CYP1A2 enzymes (111404).
|
Theoretically, beet might increase the levels of CYP3A4 substrates.
Details
In vitro research suggests that betanin, the major pigment in beet, competitively inhibits CYP3A4 in a dose-dependent manner similarly to strong CYP3A4 inhibitor ketoconazole (113425).
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
Details
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Details
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
Details
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
Details
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Details
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Below is general information about the adverse effects of the known ingredients contained in the product Pumped-AF Strawberry Watermelon. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, agmatine seems to be well tolerated when used in medicinal amounts, short-term.
Most Common Adverse Effects:
Orally: Diarrhea, dyspepsia, nausea.
Gastrointestinal ...Orally, agmatine has been reported to cause diarrhea, dyspepsia, and nausea in two small clinical studies (94736,94742). Mild-to-moderate diarrhea and nausea were reported in 3 out of 24 patients taking agmatine sulfate 3.56 grams daily. These adverse effects appeared within 2-3 days of therapy and resolved upon treatment discontinuation (94736).
General
...Orally, beet seems to be well tolerated when used for medicinal purposes, short term.
Most Common Adverse Effects:
Orally: Red stools and red urine.
Serious Adverse Effects (Rare):
Orally: Hypocalcemia and kidney damage when ingested in large amounts.
Endocrine ...Theoretically, ingestion of large quantities of beets could lead to hypocalcemia because of the oxaluric acid content (18).
Gastrointestinal
...Orally, beet juice may cause red stools (94470,97726,100142,100145,105762).
This red coloring of the stools is not harmful. Additionally, beet supplementation has been reported to cause black stools. In one case, a 79-year-old male on apixaban and clopidogrel presented with black stools, nausea, and vomiting after taking beet pills 2-3 days prior. The likelihood of upper gastrointestinal bleed was determined to be low based on factors such as normal vital signs and lack of severe anemia. The patient was diagnosed with beet-induced pseudo-hematochezia which was successfully treated with fluids and discontinuation of the beet supplement (113426).
Other less common gastrointestinal side effects include loose stools, constipation, and nausea (100149).
Genitourinary ...Orally, beet is known to produce red or pink urine (beeturia) in some people (32569,34134,94464,94470,97725,97726,100142,100145,100152,105762,113422). However, this red coloring of the urine is not harmful and dissipates after about 12 hours (113422).
Neurologic/CNS ...Orally, vivid dreams and worsening headaches have each occurred in one person in a clinical trial, although it is not clear if this is due to beet (97723).
Renal ...Theoretically, ingestion of large quantities of beets could lead to kidney damage due to its oxaluric acid content (18).
General
...Orally, creatine is generally well-tolerated.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Dehydration, diarrhea, gastrointestinal upset, muscle cramps, and water retention.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about interstitial nephritis, renal insufficiency, rhabdomyolysis, and venous thrombosis.
Cardiovascular
...Some research suggests that creatine supplementation can cause edema.
In a randomized controlled trial, 26% of patients with amyotrophic lateral sclerosis (ALS) receiving creatine 10 grams daily reported edema after 2 months of treatment compared to 9% with placebo. The difference between groups was statistically significant at 2 months but not at month 4 and beyond. Creatine is believed to cause slight water retention, which may have been more apparent in patients who were immobilized due to ALS (46647). While this adverse drug reaction did not lead to worsening cardiac function in these patients, theoretically, creatine-related water retention could worsen congestive heart failure or hypertension.
There is one case report of lone atrial fibrillation in a 30-year-old male vegetarian. He started powdered creatine 20 grams daily for 5 days, followed by 2.5 grams daily for a month. However, he discontinued powdered creatine due to severe cramping and diarrhea, and reinitiated creatine supplementation a month later with an encapsulated formulation. Aside from gelatin in the capsule, creatine was the only ingredient listed in both formulations. During the loading dose phase, the patient developed dyspnea and palpitations and was diagnosed with lone atrial fibrillation in the emergency department. Symptoms resolved with treatment and supplement discontinuation (13187). Theoretically, alterations in electrolyte balance due to dehydration or diarrhea could lead to conduction abnormalities and arrhythmia; however, in this case, the patient had normal electrolyte levels. Contaminants in dietary supplements might also be responsible for adverse reactions; this specific creatine product was not tested for contaminants. It remains unclear whether creatine was associated with this event.
Theoretically, taking creatine nitrate might reduce blood pressure and heart rate due to its nitrate component. However, clinical research shows that creatine nitrate 12 grams daily for 7 days followed by 3 grams daily for 21 days does not lower blood pressure or heart rate acutely or chronically when compared to creatine monohydrate or placebo (95959).
Dermatologic
...In a small clinical trial of older, healthy males, one subject out of the 10 receiving creatine 5 grams four times daily for 10 days followed by 4 grams daily for 20 days reported a skin rash during the study.
The type and severity of rash and whether it resolved after creatine was discontinued were not discussed (4572). Also, skin rash has been reported by patients taking celecoxib and creatine; however, whether this effect was due to creatine or celecoxib is unclear (46706).
Topically, burning, itching, redness, irritation, and perception of changes in skin temperature have been reported (104669).
Endocrine ...Creatine may influence insulin production (11330). In human research, insulin levels increased 120 and 240 minutes after creatine supplementation (46760); however, there was no effect in another trial (46732). In a clinical study, 0.3 grams/kg of creatine daily for one week significantly increased cortisol levels by 29%. However, the levels returned to baseline at week 2 (46615).
Gastrointestinal
...Some small clinical studies have reported diarrhea and vomiting with oral creatine supplementation (4584,11332,46562,46684,46698,46704,104673).
Also, gastrointestinal distress, transient abdominal discomfort, constipation, heartburn, and nausea have been reported by a small number of individuals in randomized, controlled clinical trials (4572,11332,46527,46528,46573,46589,46622,46668,46684,46695), (46704,46771,95964,104668,104669,104673,108316). However, most high-quality clinical research shows that creatine does not increase the incidence of gastrointestinal upset (103102,103278,103279).
Undissolved creatine powder may cause gastroenteritis (1368). Additionally, simultaneous intake of creatine and caffeine powder may increase the occurrence of gastrointestinal distress (95964).
Hematologic ...There are two case reports of creatine-related venous thrombosis in otherwise healthy adults. In the first case, an active 18-year-old male who had been taking an unspecified dose of creatine daily for 3 months was diagnosed with venous thrombosis via MRI. The patient reported increased thirst and fluid consumption when taking creatine. In the second case, an active 31-year-old male who had recently taken a 5-hour flight was diagnosed with deep vein thrombosis. He had been taking an unspecified dose of creatine. After stopping creatine and receiving anticoagulation therapy for 6 months, both patients' thromboses were resolved and did not recur. Researchers speculate that dehydration might be to blame for these adverse events, as dehydration increases the risk of thrombosis. In both cases, thrombophilic conditions were ruled out, and a temporal relationship between creatine consumption and thrombosis was established (90301). However, it remains unclear if creatine was responsible for these thrombotic events.
Hepatic
...Despite two case reports describing hepatic injury in patients taking creatine (46701,90319), meta-analyses and clinical studies specifically evaluating the safety of creatine have not identified an increased risk for hepatic injury (103278,103279).
In addition, population research suggests that there is not an association between creatine intake and liver fibrosis, cirrhosis, or hepatic steatosis. However, this study largely included subjects consuming less than 4 grams daily (112208).
One preliminary clinical trial specifically evaluated the effect of creatine loading and maintenance doses on hepatic function indices in healthy adults. No clinically significant changes in hepatic indices were reported in patients taking creatine loading doses of 20 grams daily for 5 days followed by maintenance doses of 3 grams daily for 8 weeks (46521). Another clinical study evaluated the impact of creatine monohydrate and creatine nitrate on liver function enzymes, showing no change in levels within 5 hours after the first dose of 12 grams or after continued consumption of 12 grams daily for 7 days followed by 3 grams daily for 21 days (95959). The patients that experienced hepatic injury in the available case reports were also taking other exercise supplements. Whether the reported adverse hepatic effects were due to creatine or the other supplements patients were taking is unclear. Also, neither of these case reports addressed whether the supplements were tested for contamination (46701,90319).
Musculoskeletal ...Creatine-associated increase in body mass is well documented in randomized, controlled clinical trials and is often as large as 1-2 kg during the five-day loading period of creatine (2101,4569,4589,4591,4600,4605,46504,46561,46815,46827)(46830,46843,95962,103279,112201). This may be considered an unwanted adverse reaction in some individuals and a desired effect of supplementation in others. This weight gain may interfere with mass-dependent activities such as running and swimming (46504,46823). Muscle cramping due to creatine supplementation has been reported in controlled clinical trials and may result from water retention in skeletal muscle (2104,4572,4584,30915,46562,46695,46826,46827,104673). However, most high quality clinical research shows that creatine does not increase the incidence of musculoskeletal injuries or muscle cramping (103102). In one case report, rhabdomyolysis in a weight lifter using creatine 25 grams daily over a one-year period has been reported (12820). Another case report describes an adult male who developed acute compartment syndrome of the leg after regular consumption of an unspecified amount of creatine and cocaine (112210).
Neurologic/CNS ...In clinical research, thirst, sleepiness, mild headache, and syncope have been reported for patients taking creatine, although the events were uncommon (46578,46615,46820). More serious adverse events have been reported for patients taking creatine in combination with other ingredients. A case of ischemic stroke has been reported for an athlete who consumed creatine monohydrate 6 grams, caffeine 400-600 mg, ephedra 40-60 mg, and a variety of other supplements daily for 6 weeks (1275). In another case, a 26 year old male reported with a hemorrhagic stroke linked to taking the supplement Jack3d, which contains creatine, DMAA, schizandrol A, caffeine, beta-alanine, and L-arginine alpha-ketoglutarate (90318). It is likely that these adverse events were due to other ingredients, such as caffeine, ephedra, and DMAA, which are known to have stimulant and vasoconstrictive properties.
Oncologic ...Population research shows that use of muscle building supplements such as creatine, protein, and androstenedione is associated with an increased odds of testicular germ cell cancer. This risk appears to be more apparent in early users, those using two or more muscle building supplements, and those with long-term use of the supplements. The odds of testicular germ cell cancer may be increased by up to 155% in males taking both creatine and protein supplements (90329). The risk of testicular germ cell cancer from creatine alone is unclear from this study.
Psychiatric ...Anxiety, irritability, depression, aggression, and nervousness have been reported in clinical research for patients taking creatine, although the effects are not common (46518). A case of acute organic psychosis was reported in a 32-year-old soldier in Iraq who was consuming excessive amounts of caffeine coupled with use of creatine (Creatamax, MaxiNutrition) one tablet twice daily for 3 weeks plus a specific stimulant containing bitter orange, guarana seed extract, and St. John's wort extract (Ripped Fuel Ephedra Free, Twinlabs) two tablets three times daily for 2 days prior to admission. The psychosis was considered likely due to caffeine consumption in combination with the stimulant supplement rather than creatine (37982).
Renal
...Isolated cases of renal dysfunction in patients taking creatine have been reported, including a case of interstitial nephritis in a healthy male (184) and a case of renal insufficiency in a football player (46828).
In contrast to these cases, several clinical studies and case reports have shown that creatine does not affect markers of renal function in healthy adults (2120,3996,4573,16535,46735,46749,46758,46779,46813,95959,103279). Doses studied included 5- to 7-day loading regimens of 12 to 21 grams daily (2120,46813), or maintenance doses of 3-10 grams daily for up to 2 years (16535,46712,46758,95959). In two additional studies, creatine supplementation 15.75 grams for 5 days followed by 4.25 grams daily for 20 days with carbohydrate and protein ingestion led to no change of renal stress markers (46844). Other clinical research has shown that ingestion of creatine up to 30 grams daily for 5 years is not associated with an increased incidence of renal dysfunction (103102).
Other case reports involve patients with pre-existing renal dysfunction. For example, in one case, a patient with a history of recurrent renal failure developed relapsing steroid-responsive nephritis syndrome after taking creatine (1368,2118). In another case, a patient with diabetic nephropathy who was taking creatine and metformin developed severe metabolic acidosis and acute renal failure. It is unclear if creatine contributed to this event, as metformin alone is known to cause metabolic acidosis (46738). These case reports have raised concern that individuals with pre-existing renal dysfunction may be at increased risk for renal injury with creatine supplementation. However, no prospective clinical trials have been conducted in this population to clarify this concern.
In addition, two cases of acute kidney injury and hypercalcemia have been reported in 16 year old males that took 1-4 servings of creatine for less than 4 weeks; however, the creatine product contained unlabeled, very high doses of vitamin D, which is the likely cause of these symptoms (109739).
In one survey, 13% of male collegiate athletes taking creatine reported dehydration (4584). The Association of Professional Team Physicians has warned that creatine may cause dehydration, heat-related illnesses, and electrolyte imbalances, and reduce blood volume. Mild transient dehydration resulting in an elevated serum creatinine was also reported in a single person in a clinical trial (104672). However, a study found that creatine supplementation during preseason football training had no effect on fluid or electrolyte status (46845). Additionally, most high quality clinical research shows that creatine does not increase dehydration (103102). A theoretical increase in risk of dehydration due to intracellular fluid shifts has led most creatine manufacturers to caution about adequate hydration with creatine supplementation (4576).
Other
...There have been reports of heat intolerance with oral creatine supplementation (46505).
Increases in formaldehyde production have been reported with creatine use. A-24 year-old man taking supratherapeutic doses of creatine monophosphate in combination with an energy supplement developed malignant hyperthermia after undergoing anesthesia. His symptoms included tachycardia, hypertension, hypercarbia, and hyperthermia. Environmental factors are suspected to have played a role in the development of malignant hyperthermia, so whether this adverse event was due to creatine at all is unclear (46717).
In 1997, three collegiate wrestlers died after engaging in a rapid weight-loss program in order to qualify for competition (93628). Initially creatine supplementation was considered to have contributed to or caused these deaths (12820,93629); however, investigations by the U.S. Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug Administration (FDA) did not confirm this belief (12820,93630). It appears that only one of the three wrestlers had been using creatine. Instead, the deaths were related to drastic, short-term weight loss in which the wrestlers wore rubber suits, avoided hydration, and performed workouts in rooms with temperatures up to 33 °C (1368,93631).
General
...Orally, rectally, and topically, glycerol seems to be well tolerated.
Intravenously, glycerol may be unsafe.
Most Common Adverse Effects:
Orally: Bloating, diarrhea, nausea, vomiting, dizziness, and headache.
Topically: Burning, irritation, and pruritus.
Intravenously: Hemolysis in patients with acute ischemic stroke.
Dermatologic ...Topically, glycerol has been reported to cause burning, irritation, and pruritus (93754,93756). Rectally, the regular administration of glycerol 50% enemas has been reported to cause generalized urticaria in at least two patients; in both patients, symptoms resolved after discontinuation (110019,110025).
Gastrointestinal ...Orally, glycerol can cause bloating, nausea, vomiting, thirst, and diarrhea (15,2475).
Hematologic ...Intravenously, glycerol has been reported to caused hemolysis in people treated for acute ischemic stroke (2480,2482).
Neurologic/CNS ...Orally, glycerol can cause mild headache and dizziness (15,2475).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).