Ingredients | Amount Per Serving |
---|---|
(Manganese Bisglycinate Chelate)
|
10 mg |
Kosher Vegetable Capsules, Cellulose, Magnesium Stearate (Alt. Name: Mg Stearate)
Below is general information about the effectiveness of the known ingredients contained in the product Chelated Manganese. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Chelated Manganese. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Oral manganese is safe when used in doses below the tolerable upper intake level (UL) of 11 mg daily for adults 19 years and older (1994,7135). ...when used parenterally and appropriately. Parenteral manganese chloride and manganese sulfate are FDA-approved prescription products.
POSSIBLY UNSAFE ...when used orally in high doses. Doses exceeding 11 mg daily can cause significant adverse effects (7135). ...when used parenterally in moderate or high doses, long-term. Reports of neurotoxicity and Parkinson-like symptoms have been reported with parenteral nutrition manganese doses above 60 mcg daily. It is recommended that adults on long-term parenteral nutrition receive manganese in doses of no more than 55 mcg daily (99302).
LIKELY UNSAFE ...when inhaled in moderate doses, long-term. According to the US Occupational Safety and Health Administration (OSHA), the permissible exposure limit (PEL) for manganese is 5 mg/m3. Exposure to higher amounts of manganese dust or fumes has been associated with central nervous system toxicity, Parkinson-like symptoms, and poor bone health (61296,102516).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Manganese is safe in children when used in daily doses less than the tolerable upper intake level (UL) of 2 mg in children 1-3 years, 3 mg in children 4-8 years, 6 mg in children 9-13 years, and 9 mg in children 14-18 years (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
Daily doses greater than the UL are associated with a greater risk of toxicity (7135).
CHILDREN: LIKELY UNSAFE
when inhaled at moderate doses, long-term.
Exposure to high amounts of manganese dust has been associated with central nervous system toxicity and Parkinson-like symptoms (61296).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Manganese is safe when used in doses below the tolerable upper intake level (UL) of 11 mg daily during pregnancy or lactation in those aged 19 or older. However, those under 19 years of age should limit doses to less than 9 mg daily (7135).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses over the UL are associated with a greater risk of toxicity (7135). Additionally, observational research shows that adults with higher blood manganese levels have greater odds of delivering low birth weight or small for gestational age (SGA) male, but not female, infants (102515).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when inhaled at moderate doses, long-term.
Manganese salts can cross the placenta, and animal research suggests that large amounts of manganese may be teratogenic (61296).
Below is general information about the interactions of the known ingredients contained in the product Chelated Manganese. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, the risk for manganese toxicity might increase when taken with antipsychotic drugs.
Details
Hallucinations and behavioral changes have been reported in a patient with liver disease who was taking haloperidol and manganese. Researchers speculate that taking manganese along with haloperidol, phenothiazine-derivatives, or other antipsychotic medications might increase the risk of manganese toxicity in some patients (61493).
|
Theoretically, manganese might reduce the absorption of quinolone antibiotics.
Details
Manganese is a multivalent cation. Interactions resulting in reduced quinolone absorption have been reported between quinolones and other multivalent cations, such as calcium and iron (488).
|
Theoretically, manganese might reduce the absorption of tetracycline antibiotics.
Details
Manganese is a multivalent cation. Interactions resulting in reduced tetracycline absorption have been reported between tetracyclines and other multivalent cations, such as calcium and iron (488).
|
Below is general information about the adverse effects of the known ingredients contained in the product Chelated Manganese. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and parenterally, manganese is generally well tolerated when used in appropriate doses.
High doses might be unsafe.
Serious Adverse Effects (Rare):
All routes of administration: Neurotoxicity, including Parkinson-like extrapyramidal symptoms, when used in high doses.
Cardiovascular ...Chronic occupational exposure to manganese dust or fumes can cause orthostatic hypotension, and heart rate and rhythm disturbances (61363).
Endocrine ...Chronic occupational exposure to manganese dust or fumes can cause elevations in thyrotropin-releasing hormone (TRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels (61378).
Hepatic ...Manganese intoxication may cause cirrhosis and hepatic steatosis. In one case, a 13-year-old female with manganese intoxication developed severe, life-threatening neurological symptoms, with liver biopsy indicating incomplete cirrhosis and microvesicular steatosis. Chelation therapy and multiple rounds of therapeutic plasma exchange were required before symptoms resolved. The source of manganese exposure was not identified, and it is not clear if the impaired liver function contributed to the manganese accumulation or if elevated manganese exposure led to the liver damage.
Musculoskeletal ...Chronic occupational exposure to manganese dust or fumes has been associated with lower bone quality in females, but not males, suggesting that prolonged manganese exposure might increase the risk of osteoporosis in females (102516). A meta-analysis of 11 observational studies in adults also suggests that increased environmental exposure to airborne manganese sources is associated with lower motor function scores (108537).
Neurologic/CNS
...Orally, there is concern that higher doses of manganese might increase the risk of neurotoxicity, including Parkinson-like extrapyramidal symptoms (7135,10665,10666).
One severe case of irreversible Parkinson disease possibly related to taking manganese 100 mg daily for 2-4 years has been reported (96418). In another case, a 13-year-old female with manganese intoxication (diagnosed from blood manganese levels and cranial MRI evidence) developed severe neurological symptoms including loss of consciousness, decorticate posture, clonus, increased reflexes in the extremities, isochoric pupils, and no painful stimulus response. Liver biopsy also showed incomplete cirrhosis and microvesicular steatosis. The patient was intubated, and chelation therapy and multiple rounds of therapeutic plasma exchange were required before symptoms resolved. The source of the child's manganese exposure was not identified (112137). Individuals with impaired manganese excretion can also experience these effects even with very low manganese intake. Manganese accumulation due to chronic liver disease seems to cause Parkinson-like extrapyramidal symptoms, encephalopathy, and psychosis (1992,7135). One review recommends stopping supplementation if aminotransferase or alkaline phosphatase levels rise beyond twice normal (99302).
Chronic occupational exposure to manganese dust or fumes can also cause extrapyramidal reactions (1990,7135). In 1837, Couper observed that exposure to manganese dust particles produces a neurological syndrome characterized by muscle weakness, tremor, bent posture, whispered speech, and excess salivation (61264). Additionally, observational research in children has found that elevated manganese levels detected in the hair and fingernails due to environmental exposure may be associated with impaired neurocognitive function or development (108535). A meta-analysis of 11 observational studies in adults also suggests that increased environmental exposure to airborne manganese sources is associated with lower cognitive function scores (108537).
Intravenously, manganese might increase the risk of neurotoxicity when administered at high doses or for an extended duration. Cases of Parkinson-like symptoms have been reported in patients receiving parenteral nutrition containing more than 60 mcg of manganese daily. Moderate MRI intensity uptake for manganese in the globus pallidus and basal ganglion areas of the brain has been shown in patients receiving parenteral manganese (96416,99302).
Psychiatric ...Chronic occupational exposure to manganese dust or fumes can cause mood disturbance and dementia (1990,7135). A case report describes a man who presented with confusion, psychosis, dystonic limb movements, and cognitive impairment after chronic industrial manganese exposure (99415). Symptoms of manganese toxicity from inhalational exposure develop slowly with initial fatigue and personality changes, progressing to hallucinations, delusions, hyperexcitability, Parkinson-like symptoms, dystonia, and dementia (99415). Additionally, observational research has found that chronic environmental exposure to manganese sources such as mining operations and various industrial processes may be associated with a greater risk for developing symptoms of depression (108536).
Pulmonary/Respiratory ...Chronic occupational exposure to manganese dust or fumes can cause acute chemical pneumonitis, pulmonary edema, or acute tracheobronchitis (61495).