Ingredients | Amount Per Serving |
---|---|
Extract Blend
(15:1 Extract)
|
|
Spermidine
(extract)
|
|
(leaf)
|
|
(leaf)
|
|
( papaya )
(fruit)
|
|
( papaya )
|
|
Mango Leaf Extract
(leaf)
|
Glycerin, Water, Purified
Below is general information about the effectiveness of the known ingredients contained in the product Radiance Boost +. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Radiance Boost +. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when properly prepared bamboo shoots are used orally in food amounts (96875).
POSSIBLY SAFE ...when bamboo salt-containing toothpaste is used topically during brushing twice daily for up to 4 weeks (109458). There is insufficient reliable information available about the safety of bamboo when taken by mouth in the amounts found in medicine or when used topically on areas of the body beyond the teeth and gums.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when guava fruit is consumed as food. Guava fruit has Generally Recognized as Safe (GRAS) status (4912).
POSSIBLY SAFE ...when guava fruit or leaf extract is used orally for medicinal purposes, short-term. Guava fruit has been used with apparent safety at doses of 500-1000 grams daily for 12 weeks (95562). Guava leaf extract has been used with apparent safety at doses of 1 gram daily for 12 weeks or 1.5 grams daily for 3 days (101758,70318). ...when the leaf extract is used topically, short-term. Guava leaf extract has been used safely as a mouth rinse at a dose of 0.15% twice daily for 30 days (101754). Guava leaf extract has been safely used on the skin at a dose of 6% twice daily for 28 days (101757).
PREGNANCY AND LACTATION: LIKELY SAFE
when guava fruit is consumed as food.
There is insufficient reliable information available about the safety of guava fruit or leaf when used for medicinal purposes during pregnancy and lactation.
LIKELY SAFE ...when the ripe fruit is used orally in amounts commonly found in foods. Papaya has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the leaf extract is used orally and appropriately in medicinal amounts, short term. The leaf extract has been used with apparent safety in doses of up to 3300 mg daily for up to 5 days (102799,102800). ...when the ripe fruit is used topically and appropriately, short term. The fruit has been applied with apparent safety to the gingiva or skin for up to 10 days (93090,93091).
POSSIBLY UNSAFE ...when the unripe fruit containing papaya latex and raw papain is used orally. Raw papain has been reported to cause esophageal perforation (6,93083). ...when papaya latex is used topically. Papaya latex, which contains raw papain, is a severe irritant and vesicant (6).
PREGNANCY: LIKELY SAFE
when the ripe fruit is consumed in amounts commonly found in foods.
PREGNANCY: POSSIBLY UNSAFE
when the unripe fruit containing papaya latex is used orally; avoid using.
There is some concern that crude papain, a constituent of papaya latex, is teratogenic and embryotoxic (6); however, this might be due to extraneous substances rather than papain (11). Some evidence also suggests that high doses of papaya seed extract have abortifacient activity and can adversely affect fetal development (67870). Theoretically, eating large amounts of papaya seeds may have similar effects.
LACTATION: LIKELY SAFE
when the ripe fruit is consumed in amounts commonly found in foods.
There is insufficient reliable information available about the safety of using papaya medicinally; avoid using.
LIKELY SAFE ...when used orally in amounts typically found in foods. Rosemary has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the leaf is used orally and appropriately in medicinal amounts (18). Powdered rosemary leaf has been used with apparent safety as a single dose of up to 1.5 grams (18246,91731) or at a dose of 1-4 grams daily for up to 8 weeks (91727,98536,105327,109561). ...when the essential oil is used topically and appropriately for up to 7 months (5177,91729,109560). ...when the essential oil is used by inhalation as aromatherapy, short-term (7107,18323,105324,109559).
LIKELY UNSAFE ...when the essential oil or very large quantities of rosemary leaf are used orally. Ingestion of undiluted rosemary oil or very large quantities of rosemary leaf can cause serious adverse effects (18,515).
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Rosemary might have uterine and menstrual flow stimulant effects (4,12,18), and might increase metabolism of estradiol and estrone (18331); avoid using. There is insufficient reliable information available about the safety of rosemary when used topically during pregnancy.
LACTATION:
There is insufficient reliable information available about the safety of using rosemary in medicinal amounts during lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Turmeric products providing up to 8 grams of curcumin have been safely used for up to 2 months (10453,11144,11150,17953,79085,89720,89721,89724,89728,101347)(81036,101349,107110,107116,107117,107118,107121,109278,109283). Turmeric in doses up to 3 grams daily has been used with apparent safety for up to 3 months (102350,104146,104148,113357). ...when used topically and appropriately (11148).
POSSIBLY SAFE ...when used as an enema, short-term. Turmeric extract in water has been used as a daily enema for up to 8 weeks (89729). ...when used topically as a mouthwash, short-term. A mouthwash containing 0.05% turmeric extract and 0.05% eugenol has been used safely twice daily for up to 21 days (89723).
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in food.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts; turmeric might stimulate the uterus and increase menstrual flow (12).
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food.
There is insufficient reliable information available about the safety of using turmeric in medicinal amounts during lactation.
Below is general information about the interactions of the known ingredients contained in the product Radiance Boost +. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, long-term bamboo use might increase the effects and adverse effects of antithyroid drugs, possibly leading to hypothyroidism.
Details
Animal research suggests that long-term consumption of bamboo shoot can decrease thyroid peroxidase activity, as well as levels of thyroxine (T4) and triiodothyronine (T3) (33538). This effect has not yet been reported in humans.
|
Theoretically, concomitant use with antidiabetes drugs might have additive effects and increase the risk of hypoglycemia. Animal research shows that guava leaf extract or guava fruit can have hypoglycemic effects (101781). Monitor blood glucose levels closely. Medication dose adjustments may be necessary. Some antidiabetes drugs include glimepiride (Amaryl), glyburide (Diabeta, Glynase PresTab, Micronase), insulin, metformin, pioglitazone (Actos), rosiglitazone (Avandia), and others.
|
Theoretically, papaya extract may increase the levels and clinical effects of amiodarone.
Details
Animal research in rats shows that a single oral dose of papaya extract, as well as multiple doses of papaya extract daily over 14 days, prior to a single dose of amiodarone delays the time to maximum amiodarone concentration. However, only the 14-day papaya extract regimen increases systemic amiodarone exposure by 60% to 70% (93093). This interaction has not been reported in humans.
|
Concomitant use of antidiabetic drugs with fermented papaya can produce additive effects. It is unclear if other forms of papaya have the same effect.
Details
A small low-quality clinical study in patients with type 2 diabetes who are taking glibenclamide shows that taking a fermented papaya preparation 3 grams daily for 2 months decreases fasting and postprandial blood glucose levels when compared to baseline. Additionally, of the 25 patients in the study, 9 required a reduction in glibenclamide dose (67902).
|
Theoretically, consuming large quantities of papaya fruit can reduce the clinical effects of levothyroxine.
Details
In one case-report, a 37-year-old male with a history of thyroidectomy who was stabilized on levothyroxine for 5 years presented with hypothyroidism after consuming 5-6 papaya fruits daily for 14 days during vacation. In a controlled re-challenge test involving 5-6 papayas daily, the patient remained euthyroid for 7 days, but developed mild hypothyroidism after 14 days. Both times, thyroid levels normalized 40-45 days after discontinuing papaya (93087).
|
Theoretically, concomitant use of warfarin with papain-containing papaya extract might increase the effects and side effects of warfarin.
Details
In one case report, a patient previously stable on warfarin was found to have an international normalization ratio (INR) of 7.4, which was attributed to ingestion of a supplement containing papain from papaya extract (613).
|
Theoretically, rosemary may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, taking rosemary with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Animal research shows that rosemary extract can decrease blood glucose levels in diabetic models (71821,71923). However, research in humans is conflicting. Although rosemary powder decreased blood glucose levels in healthy adults (105327), no change in blood glucose levels was seen in adults with type 2 diabetes, most of whom were taking antidiabetes drugs (105323,105327).
|
Theoretically, rosemary might have additive effects with salicylate-containing drugs such as aspirin.
Details
Rosemary is reported to contain salicylates (18330).
|
Theoretically, rosemary might have additive effects with salicylate-containing drugs such as choline magnesium trisalicylate.
Details
Rosemary is reported to contain salicylate (18330).
|
Theoretically, rosemary might decrease the levels and clinical effects of CYP1A1 substrates.
Details
|
Theoretically, rosemary might decrease the levels and clinical effects of CYP1A2 substrates.
Details
|
Theoretically, rosemary might have additive effects with salicylate-containing drugs such as salsalate.
Details
Rosemary is reported to contain salicylate (18330).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research suggests that curcumin, a constituent of turmeric, inhibits mechlorethamine-induced apoptosis of breast cancer cells by up to 70%. Also, animal research shows that curcumin inhibits cyclophosphamide-induced tumor regression (96126). However, some in vitro research shows that curcumin does not affect the apoptosis capacity of etoposide. Also, other laboratory research suggests that curcumin might augment the cytotoxic effects of alkylating agents. Reasons for the discrepancies may relate to the dose of curcumin and the specific chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have on alkylating agents.
|
Taking turmeric with amlodipine may increase levels of amlodipine.
Details
Animal research shows that giving amlodipine 1 mg/kg as a single dose following the use of turmeric extract 200 mg/kg daily for 2 weeks increases the maximum concentration and area under the curve by 53% and 56%, respectively, when compared with amlodipine alone (107113). Additional animal research shows that taking amlodipine 1 mg/kg with a curcumin 2 mg/kg pretreatment for 10 days increases the maximum concentration and area under the curve by about 2-fold when compared with amlodipine alone (103099).
|
Turmeric may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Curcumin, a constituent of turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271). Furthermore, two case reports have found that taking turmeric along with warfarin or fluindione was associated with an increased international normalized ratio (INR) (89718,100906). However, one clinical study in healthy volunteers shows that taking curcumin 500 mg daily for 3 weeks, alone or with aspirin 100 mg, does not increase antiplatelet effects or bleeding risk (96137). It is possible that the dose of turmeric used in this study was too low to produce a notable effect.
|
Theoretically, taking turmeric with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Animal research and case reports suggest that curcumin, a turmeric constituent, can reduce blood glucose levels in patients with diabetes (79692,79984,80155,80313,80315,80476,80553,81048,81219). Furthermore, clinical research in adults with type 2 diabetes shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg decreased postprandial glucose levels for up to 24 hours when compared with glyburide alone, despite the lack of a significant pharmacokinetic interaction (96133). Another clinical study in patients with diabetes on hemodialysis shows that taking curcumin 80 mg daily for 12 weeks can reduce blood glucose levels when compared with placebo (104149).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro and animal research shows that curcumin, a constituent of turmeric, inhibits doxorubicin-induced apoptosis of breast cancer cells by up to 65% (96126). However, curcumin does not seem to affect the apoptosis capacity of daunorubicin. In fact, some research shows that curcumin might augment the cytotoxic effects of antitumor antibiotics, increasing their effectiveness. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effects, if any, antioxidants such as turmeric have on antitumor antibiotics.
|
Theoretically, turmeric might increase or decrease levels of drugs metabolized by CYP1A1. However, research is conflicting.
Details
|
Theoretically, turmeric might increase levels of drugs metabolized by CYP1A2. However, research is conflicting.
Details
|
Turmeric might increase levels of drugs metabolized by CYP3A4.
Details
In vitro and animal research show that turmeric and its constituents curcumin and curcuminoids inhibit CYP3A4 (21497,21498,21499). Also, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking turmeric and cancer medications that are CYP3A4 substrates, including everolimus, ruxolitinib, ibrutinib, and palbociclib, and bortezomib (111644). In another case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels after consuming turmeric powder at a dose of 15 or more spoonfuls daily for ten days prior. It was thought that turmeric increased levels of tacrolimus due to CYP3A4 inhibition (93544).
|
Theoretically, turmeric might increase blood levels of oral docetaxel.
Details
Animal research suggests that the turmeric constituent, curcumin, enhances the oral bioavailability of docetaxel (80999). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Theoretically, large amounts of turmeric might interfere with hormone replacement therapy through competition for estrogen receptors.
Details
In vitro research shows that curcumin, a constituent of turmeric, displaces the binding of estrogen to its receptors (21486).
|
Theoretically, taking turmeric and glyburide in combination might increase the risk of hypoglycemia.
Details
Clinical research shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg increases blood levels of glyburide by 12% at 2 hours after the dose in patients with type 2 diabetes. While maximal blood concentrations of glyburide were not affected, turmeric modestly decreased postprandial glucose levels for up to 24 hours when compared to glyburide alone, possibly due to the hypoglycemic effect of turmeric demonstrated in animal research (96133).
|
Theoretically, turmeric might increase the risk of liver damage when taken with hepatotoxic drugs.
Details
|
Theoretically, turmeric might increase the effects of losartan.
Details
Research in hypertensive rats shows that taking turmeric can increase the hypotensive effects of losartan (110897).
|
Theoretically, turmeric might have additive effects when used with hepatotoxic drugs such as methotrexate.
Details
In one case report, a 39-year-old female taking methotrexate, turmeric, and linseed oil developed hepatotoxicity (111644).
|
Theoretically, turmeric might increase the effects and adverse effects of norfloxacin.
Details
Animal research shows that taking curcumin, a turmeric constituent, can increase blood levels of orally administered norfloxacin (80863).
|
Theoretically, turmeric might increase blood levels of OATP4C1 substrates.
Details
In vitro research shows that the turmeric constituent curcumin competitively inhibits OATP4C1 transport. This transporter is expressed in the kidney and facilitates the renal excretion of certain drugs (113337). Theoretically, taking turmeric might decrease renal excretion of OATP substrates.
|
Theoretically, turmeric might increase the absorption of P-glycoprotein substrates.
Details
|
Theoretically, turmeric might alter blood levels of paclitaxel, although any effect may not be clinically relevant.
Details
Clinical research in adults with breast cancer receiving intravenous paclitaxel suggests that taking turmeric may modestly alter paclitaxel pharmacokinetics. Patients received paclitaxel on day 1, followed by either no treatment or turmeric 2 grams daily from days 2-22. Pharmacokinetic modeling suggests that turmeric reduces the maximum concentration and area under the curve of paclitaxel by 12.1% and 7.7%, respectively. However, these changes are not likely to be considered clinically relevant (108876). Conversely, animal research suggests that curcumin, a constituent of turmeric, enhances the oral bioavailability of paclitaxel (22005). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Turmeric might increase the effects and adverse effects of sulfasalazine.
Details
Clinical research shows that taking the turmeric constituent, curcumin, can increase blood levels of sulfasalazine by 3.2-fold (81131).
|
Turmeric might increase the effects and adverse effects of tacrolimus.
Details
In one case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels of 29 ng/mL. The patient previously had tacrolimus levels within the therapeutic range at 9.7 ng/mL. Ten days prior to presenting at the emergency room the patient started consumption of turmeric powder at a dose of 15 or more spoonfuls daily. It was thought that turmeric increased levels of tacrolimus due to cytochrome P450 3A4 (CYP3A4) inhibition (93544). In vitro and animal research show that turmeric and its constituent curcumin inhibit CYP3A4 (21497,21498,21499).
|
Turmeric may reduce the absorption of talinolol in some situations.
Details
Clinical research shows that taking curcumin for 6 days decreases the bioavailability of talinolol when taken together on the seventh day (80079). The clinical significance of this effect is unclear.
|
Theoretically, turmeric might reduce the levels and clinical effects of tamoxifen.
Details
In a small clinical trial in patients with breast cancer taking tamoxifen 20-30 mg daily, adding curcumin 1200 mg plus piperine 10 mg three times daily reduces the 24-hour area under the curve of tamoxifen and the active metabolite endoxifen by 12.8% and 12.4%, respectively, as well as the maximum concentrations of tamoxifen, when compared with tamoxifen alone. However, in the absence of piperine, the area under the curve for endoxifen and the maximum concentration of tamoxifen were not significantly reduced. Effects were most pronounced in patients who were extensive cytochrome P450 (CYP) 2D6 metabolizers (107123).
|
Turmeric has antioxidant effects. There is some concern that this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research shows that curcumin, a constituent of turmeric, inhibits camptothecin-induced apoptosis of breast cancer cells by up to 71% (96126). However, other in vitro research shows that curcumin augments the cytotoxic effects of camptothecin. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agents. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have.
|
Turmeric might increase the risk of bleeding with warfarin.
Details
One case of increased international normalized ratio (INR) has been reported for a patient taking warfarin who began taking turmeric. Prior to taking turmeric, the patient had stable INR measurements. Within a few weeks of starting turmeric supplementation, the patient's INR increased to 10 (100906). Additionally, curcumin, the active constituent in turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271), which may produce additive effects when taken with warfarin.
|
Below is general information about the adverse effects of the known ingredients contained in the product Radiance Boost +. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...There is currently a limited amount of information on the adverse effects of bamboo.
Dermatologic ...Topically, bamboo shoots have been reported to cause contact dermatitis in a 44-year-old female (33540).
Gastrointestinal ...In one case report, melanosis coli, pigmentation of the colon wall, was reported following the ingestion of bamboo leaf extract (33547).
Other ...Bamboo shoots are a source of cyanide glycosides. However, the hydrogen cyanide produced by the plant is eliminated during boiling, fermentation, or superheated steam drying of the shoots (96875). During the rescue of a male who jumped into a well which was used for bamboo shoot pickling, cyanide poisoning occurred in 8 individuals. The poisoning caused high anion gap metabolic acidosis in all patients and resulted in two deaths due to cardiac arrest. Some patients also had pulmonary edema and/or infiltration (96874).
General ...Orally, guava leaf extract may cause transient abdominal pain or nausea (101782). Topically, guava leaf extract may cause contact dermatitis (95560).
Dermatologic ...Topically, guava leaf extract may cause contact dermatitis and worsen atopic dermatitis. Exacerbation of atopic dermatitis has been reported for a 17-year-old male who added tea bags containing guava leaf 30 grams to his bath to help treat his condition. His eczema worsened after bathing with the guava tea bags and improved after discontinuation of use. Based on laboratory testing, the exacerbation of eczema was attributed to positive skin reactions of the patient to a protein and tannins found in guava leaf extract (95560).
Gastrointestinal ...Orally, transient abdominal pain or nausea has been reported in a clinical trial (101782).
General
...Orally, papaya fruit is well tolerated when consumed in food amounts.
Papaya leaf extract seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Nausea and vomiting from papaya leaf extract.
Topically: Burning sensation from unripe papaya.
Serious Adverse Effects (Rare):
Orally: Severe allergic reactions.
Dermatologic
...Orally, high doses of papaya might cause yellow skin discoloration.
A case of carotenemia has been reported for a 42-year-old female who consumed 1.5-2 papayas daily for 6 months. The condition resolved when she stopped eating papayas (67929).
Topically, unripe papaya fruit may cause occasional burning sensation when applied to skin ulcers (67856).
Gastrointestinal ...Orally, the leaf extract has been reported to cause nausea and vomiting in clinical research (102799). A case of esophageal perforation has been reported for a previously healthy 27-year-old female who used papain, a constituent of papaya latex, to digest a piece of meat stuck in her esophagus (93083).
Immunologic ...Orally, papain, a constituent of raw, unripe papaya, has been reported to cause allergic reactions in sensitive individuals, including itchy watery eyes, runny nose, sneezing, abdominal cramps, sweating, and diarrhea (6,967). Papaya may also cause hypersensitivity reactions such as systemic contact dermatitis, which occur more commonly in people who are allergic to latex (6197,7853,57635). A case of systemic contact dermatitis has been reported for a 55-year-old female with no prior history of atopic disease or drug allergy after ingesting a throat lozenge containing papaya juice (67942).
Other ...In regions with arsenic-contaminated soil, papaya fruits contain a higher mean concentration of arsenic compared with many other forms of vegetation grown in the regions. Eating papaya from these regions is thought to contribute to higher dietary levels of arsenic (32461,67879).
General ...Orally, rosemary seems to be well tolerated when used in appropriate medicinal amounts. Undiluted rosemary oil or very large quantities of rosemary leaf should not be consumed. Topically and as aromatherapy, rosemary seems to be well tolerated.
Dermatologic ...Topically, rosemary use can lead to photosensitivity, erythema, dermatitis, and cheilitis in hypersensitive individuals (4,6).
Immunologic
...Topically, allergic reactions can occur.
When used in the mouth, lip and gum edema have occurred (101173). When used on the skin, allergic contact dermatitis has occurred, likely due to the constituent carnosol (71715,71924,71926).
Rosemary might also cause occupational asthma. A case of occupational asthma caused by several aromatic herbs including thyme, rosemary, bay leaf, and garlic has been reported. The diagnosis was confirmed by inhalation challenges. Although all of the herbs caused immediate skin reactivity, a radioallergosorbent test (RAST) showed that garlic was the most potent allergen by weight, with rosemary and the other herbs showing less reactivity (783).
Neurologic/CNS ...Orally, the undiluted oil, as well as the camphor constituent of rosemary, might cause seizures (4,5,6,12868).
General
...Orally and topically, turmeric is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, dyspepsia, diarrhea, distension, gastroesophageal reflux, nausea, and vomiting.
Topically: Curcumin, a constituent of turmeric, can cause contact urticaria and pruritus.
Cardiovascular ...Orally, a higher dose of turmeric in combination with other ingredients has been linked to atrioventricular heart block in one case report. It is unclear if turmeric caused this adverse event or if other ingredients or a contaminant were the cause. The patient had taken a combination supplement containing turmeric 1500-2250 mg, black soybean 600-900 mg, mulberry leaves, garlic, and arrowroot each about 300-450 mg, twice daily for one month before experiencing atrioventricular heart block. Heart rhythm normalized three days after discontinuation of the product. Re-administration of the product resulted in the same adverse effect (17720).
Dermatologic ...Following occupational and/or topical exposure, turmeric or its constituents curcumin, tetrahydrocurcumin, or turmeric oil, can cause allergic contact dermatitis (11146,79270,79470,79934,81410,81195). Topically, curcumin can also cause rash or contact urticaria (79985,97432,112117). In one case, a 60-year-old female, with no prior reactivity to regular oral consumption of turmeric products, developed urticaria after topical application of turmeric massage oil (97432). A case of pruritus has been reported following topical application of curcumin ointment to the scalp for the treatment of melanoma (11148). Yellow discoloration of the skin has been reported rarely in clinical research (113356). Orally, curcumin may cause pruritus, but this appears to be relatively uncommon (81163,97427,104148). Pitting edema may also occur following oral intake of turmeric extract, but the frequency of this adverse event is less common with turmeric than with ibuprofen (89720). A combination of curcumin plus fluoxetine may cause photosensitivity (89728).
Gastrointestinal ...Orally, turmeric can cause gastrointestinal adverse effects (107110,107112,112118), including constipation (81149,81163,96135,113355), flatulence and yellow, hard stools (81106,96135), nausea and vomiting (10453,17952,89720,89728,96127,96131,96135,97430,112117,112118), diarrhea or loose stool (10453,17952,18204,89720,96135,110223,112117,112118), dyspepsia (17952,89720,89721,96161,112118), gastritis (89728), distension and gastroesophageal reflux disease (18204,89720), abdominal fullness and pain (81036,89720,96161,97430), epigastric burning (81444), and tongue staining (89723).
Hepatic
...Orally, turmeric has been associated with liver damage, including non-infectious hepatitis, cholestasis, and hepatocellular liver injury.
There have been at least 70 reports of liver damage associated with taking turmeric supplements for at least 2 weeks and for up to 14 months. Most cases of liver damage resolved upon discontinuation of the turmeric supplement. Sometimes, turmeric was used concomitantly with other supplements and medications (99304,102346,103094,103631,103633,103634,107122,109288,110221). The Drug-Induced Liver Injury Network (DILIN) has identified 10 cases of liver injury which were considered to be either definitely, highly likely, or probably associated with turmeric; none of these cases were associated with the use of turmeric in combination with other potentially hepatotoxic supplements. Most patients (90%) presented with hepatocellular pattern of liver injury. The median age of these case reports was 56 years and 90% identified as White. In these case reports, the carrier frequency on HLAB*35:01 was 70%, which is higher than the carrier frequency found in the general population. Of the ten patients, 5 were hospitalized and 1 died from liver injury (109288).
It is not clear if concomitant use with other supplements or medications contributes to the risk for liver damage. Many case reports did not report turmeric formulation, dosing, or duration of use (99304,103094,103631,103634,109288). However, at least 10 cases involved high doses of curcumin (250-1812.5 mg daily) and the use of highly bioavailable formulations such as phytosomal curcumin and formulations containing piperine (102346,103633,107122,109288,110221).
Neurologic/CNS ...Orally, the turmeric constituent curcumin can cause vertigo, but this effect seems to be uncommon (81163).
Psychiatric ...Orally, the turmeric constituent curcumin or a combination of curcumin and fluoxetine can cause giddiness, although this event seems to be uncommon (81206,89728).
Renal ...Orally, turmeric has been linked to one report of kidney failure, although the role of turmeric in this case is unclear. A 69-year-old male developed kidney failure related to calcium oxalate deposits in the renal tubules following supplementation with turmeric 2 grams daily for 2 years as an anti-inflammatory for pelvic pain. While turmeric is a source of dietary oxalates, pre-existing health conditions and/or chronic use of antibiotics may have contributed to the course of disease (113343).
Other ...There is a single case report of death associated with intravenous use of turmeric. However, analysis of the treatment vial suggests that the vial contained only 0.023% of the amount of curcumin listed on the label. Also, the vial had been diluted in a solution of ungraded polyethylene glycol (PEG) 40 castor oil that was contaminated with 1.25% diethylene glycol. Therefore the cause of death is unknown but is unlikely to be related to the turmeric (96136).