Ingredients | Each Capsule Contains |
---|---|
600 mg | |
(Thiamine Hydrochloride)
|
20 mg |
200 mcg |
Magnesium Stearate (Alt. Name: Mg Stearate), Microcrystalline Cellulose, Hypromellose
In 2004, Canada began regulating natural medicines as a category of products separate from foods or drugs. These products are officially recognized as "Natural Health Products." These products include vitamins, minerals, herbal preparations, homeopathic products, probiotics, fatty acids, amino acids, and other naturally derived supplements.
In order to be marketed in Canada, natural health products must be licensed. In order to be licensed in Canada, manufacturers must submit applications to Health Canada including information about uses, formulation, dosing, safety, and efficacy.
Products can be licensed based on several criteria. Some products are licensed based on historical or traditional uses. For example, if an herbal product has a history of traditional use, then that product may be acceptable for licensure. In this case, no reliable scientific evidence is required for approval.
For products with non-traditional uses, some level of scientific evidence may be required to support claimed uses. However, a high level of evidence is not necessarily required. Acceptable sources of evidence include at least one well-designed, randomized, controlled trial; well-designed, non-randomized trials; cohort and case control studies; or expert opinion reports.
Finished products licensed by Health Canada must be manufactured according to Good Manufacturing Practices (GMPs) as outlined by Health Canada.
Below is general information about the effectiveness of the known ingredients contained in the product Cyto-ALA 600 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Cyto-ALA 600 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Alpha-lipoic acid has been used with apparent safety in doses of up to 2 grams daily for 3 months to 2 years. Lower doses of 600 mg daily have been used with apparent safety for up to 4 years (3540,3541,3542,20479,96449,97630,101867,101869,103327,103333)(103335,104651,104660,113892,113897). ...when used topically and appropriately. A cream containing alpha-lipoic acid 5% has been used with apparent safety in clinical trials lasting up to 12 weeks (12021). ...when given intravenously and appropriately. Intravenous alpha-lipoic acid has been used safely in doses of up to 6000 mg weekly in clinical trials lasting up to 3 weeks (3540,3557,10148,12106).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Alpha-lipoic acid has been used with apparent safety in doses of up to 600 mg daily for 3 months in children aged 10-17 years (103330).
CHILDREN: POSSIBLY UNSAFE
when used orally in amounts over 600 mg daily.
At least five cases of alpha-lipoic acid intoxication have been reported for children aged 14 months to 16 years who consumed alpha-lipoic acid at doses up to 226 mg/kg (approximately 2400 mg). Symptoms of alpha-lipoic acid-induced intoxication included seizures, acidosis, vomiting, and unconsciousness (90444,96227,96234,104653).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
Alpha-lipoic acid has been used safely during pregnancy at doses up to 600 mg daily for up to 4 weeks (96222).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Biotin has been safely used in doses up to 300 mg daily for up to 6 months. A tolerable upper intake level (UL) has not been established (1900,6243,95662,102965). ...when applied topically as cosmetic products at concentrations of 0.0001% to 0.6% biotin (19344).
POSSIBLY SAFE ...when used intramuscularly and appropriately (8468,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at adequate intake doses of 5-25 mcg daily for up to 6 months (173,6243,19347,19348,111365). A tolerable upper intake level (UL) has not been established.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at the adequate intake (AI) dose of 30 mcg daily during pregnancy and 35 mcg daily during lactation. It has also been used in supplemental doses of up to 300 mcg daily (6243,7878). A tolerable upper intake level (UL) has not been established.
LIKELY SAFE ...when used orally and appropriately. A tolerable upper intake level (UL) has not been established for thiamine, and doses up to 50 mg daily have been used without adverse effects (15,6243). ...when used intravenously or intramuscularly and appropriately. Injectable thiamine is an FDA-approved prescription product (15,105445).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 1.
4 mg daily. A tolerable upper intake level (UL) has not been established for healthy individuals (3094,6243).
Below is general information about the interactions of the known ingredients contained in the product Cyto-ALA 600 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, the antioxidant effects of alpha-lipoic acid might alter the effectiveness of alkylating agents.
Details
The use of antioxidants like alpha-lipoic acid during chemotherapy is controversial. There are concerns that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as alpha-lipoic acid have on chemotherapy. Advise patients to consult their oncologist before using alpha-lipoic acid.
|
Theoretically, alpha-lipoic acid may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
In vitro, alpha-lipoic acid inhibits platelet aggregation (98682).
|
Theoretically, taking alpha-lipoic acid with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Although some small clinical studies have suggested that alpha-lipoic acid can lower blood glucose levels (3545,3874,3875,3876,20490,20493,104650), larger clinical studies in patients with diabetes have shown no clinically meaningful effect (20494,20495,20496,90443,90445,110118). Additionally, co-administration of single doses of alpha-lipoic acid and glyburide or acarbose did not cause detectable drug interactions in healthy volunteers (3870).
|
Theoretically, the antioxidant effects of alpha-lipoic acid might alter the effectiveness of antitumor antibiotics.
Details
The use of antioxidants like alpha-lipoic acid during chemotherapy is controversial. There are concerns that antioxidants could reduce the activity of antitumor antibiotic drugs, which work by generating free radicals (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as alpha-lipoic acid have on chemotherapy involving antitumor antibiotics. Advise patients to consult their oncologist before using alpha-lipoic acid.
|
Theoretically, alpha-lipoic acid might decrease the effects of thyroid hormone drugs.
Details
Animal research suggests that co-administration of thyroxine with alpha-lipoic acid reduces conversion into the active T3 form (8946).
|
Trimethoprim might increase blood levels of thiamine.
Details
In vitro, animal, and clinical research suggest that trimethoprim inhibits intestinal thiamine transporter ThTR-2, hepatic transporter OCT1, and renal transporters OCT2, MATE1, and MATE2, resulting in paradoxically increased thiamine plasma concentrations (111678).
|
Below is general information about the adverse effects of the known ingredients contained in the product Cyto-ALA 600 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Alpha-lipoic acid appears to be generally well tolerated when used orally, intravenously, or topically.
Most Common Adverse Effects:
Orally: Headache, heartburn, nausea, and vomiting.
Topically: Irritation and rash.
Intravenously: Nausea and vomiting.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about insulin autoimmune syndrome (IAS).
Cardiovascular ...Orally, hypotension has been reported rarely in a clinical trial (104650).
Dermatologic ...Orally, skin rash and itching have been reported after use of alpha-lipoic acid (16391,20490,21674,96233,104650). Topically, alpha-lipoic acid can cause local irritation, including burning, stinging, mild rash, or contact dermatitis (12021,30836,111701). In one case, an 86-year-old female developed allergic contact dermatitis with severe itching and oozing after applying alpha-lipoic acid 5% cream to her lower extremities. The patient had a positive skin patch test for alpha-lipoic acid, confirming the causative agent (111701). In another case, a 47-year-old female developed contact dermatitis characterized by a pruritic rash and labial adhesions hours after applying a 5% vulvar serum containing lipoic acid 0.9 grams, vitamin E, vitamin C, hyaluronic acid, and retinol palmitate to the vulva to treat vulvar lichen sclerosis. Testing confirmed that the causative agent was alpha-lipoic acid (111704). Intravenously, local allergic reactions have occurred at the injection site (1547).
Endocrine ...Orally, at least 50 published cases of insulin autoimmune syndrome (IAS) thought to be associated with use of alpha-lipoic acid have been reported (16392,104656,104657,104658,104659,107893,112941). Most reported cases have been associated with alpha-lipoic acid supplements or enriched foods; IAS has not been reported with intake of alpha-lipoic acid in food. IAS has been linked to compounds, such as alpha-lipoic acid, that contain sulfhydryl groups, but it is unclear if taking alpha-lipoic acid with other drugs known to trigger IAS increases the risk (107893,112941). IAS is characterized by very high serum insulin levels and high titers of autoantibodies against endogenous insulin. Sulfhydryl groups interact with disulfide bonds of insulin, increasing its immunogenicity (112941). Symptoms include severe spontaneous hypoglycemic episodes, as well as hunger and neuroglycopenic symptoms such as blurred vision, weakness, confusion, dizziness, sweating, and palpitations (104656,104657,107893,112941). Time to onset of IAS ranges from 1 week to 4 months (107893). Most cases of IAS have been reported in Japan and have occurred in individuals with the human leucocyte antigen (HLA)-DRB1*04:06 allele (16392,104656,107893). For patients of European decent, cases of IAS have mainly occurred in individuals with the HLA-DRB1*04:03 allele (104656,104658,104659,107893). This suggests that either of these alleles might produce a genetic predisposition to alpha-lipoic acid-associated IAS. Reported doses of alpha-lipoic acid have ranged from 200-800 mg daily, most commonly 600 mg daily (104656,104658,104659,107893). IAS-related hypoglycemic episodes have been treated with oral or intravenous glucose or sucrose, as well as prednisone. Episodes decline following discontinuation of alpha-lipoic acid, and insulin values normalize within 3-9 months (104656,104658,104659,107893).
Gastrointestinal ...Orally, heartburn, nausea, and vomiting have been reported after use of alpha-lipoic acid (3557,12106,16391,20475,30844,96225,101868,103327,103328,103333)(103335,104650,104654,104655). Higher doses (1200-1800 mg daily) seem to cause more severe effects than lower doses (600 mg daily) (3557,20475,30844,96225). Alpha-lipoic acid may also cause a burning sensation from the throat to the stomach, abdominal discomfort, or bitter taste when used orally (20478,20490,21664,96225). Intravenously, alpha-lipoic acid can cause gastrointestinal upset, including nausea and vomiting. Adverse effects are more common in patients receiving higher intravenous doses (3557) and may be more common in the elderly (96225).
Genitourinary ...Orally, alpha-lipoic acid may cause urinary disorders (20479). Oral alpha-lipoic acid has also been associated with a change in urine odor (96225,103327).
Neurologic/CNS
...Orally, alpha-lipoic acid may cause headache (21664,103328,104655) or dizziness (104650).
Intravenously, paresthesias have been reported to worsen temporarily at the beginning of therapy. Also, intravenous alpha-lipoic acid can cause headache. Adverse effects are more common in patients receiving higher intravenous doses (3557).
General
...Orally and topically, biotin is generally well tolerated.
Most Common Adverse Effects: None.
Gastrointestinal ...Orally, high-dose biotin has been rarely associated with mild diarrhea. Transient mild diarrhea was reported by 2 patients taking biotin 300 mg daily (95662).
Pulmonary/Respiratory ...In one case report in France, a 76-year-old female frequent traveler developed eosinophilic pleuropericarditis after taking biotin 10 mg and pantothenic acid 300 mg daily for 2 months. She had also been taking trimetazidine for 6 years (3914). Whether eosinophilia in this case was related to biotin, pantothenic acid, other substances, or patient-specific conditions is unknown. There have been no other similar reports.
General
...Orally and parenterally, thiamine is generally well tolerated.
Serious Adverse Effects (Rare):
Parenterally: Hypersensitivity reactions including angioedema and anaphylaxis.
Immunologic
...Orally, thiamine might rarely cause dermatitis and other allergic reactions.
Parenterally, thiamine can cause anaphylactoid and hypersensitivity reactions, but this is also rare (<0.1%). Reported symptoms and events include feelings of warmth, tingling, pruritus, urticaria, tightness of the throat, cyanosis, respiratory distress, gastrointestinal bleeding, pulmonary edema, angioedema, hypotension, and death (15,35585,105445).
In one case report, a 46-year-old female presented with systemic allergic dermatitis after applying a specific product (Inzitan, containing lidocaine, dexamethasone, cyanocobalamin and thiamine) topically by iontophoresis; the allergic reaction was attributed to thiamine (91170).