Ingredients | Each Capsule Contains |
---|---|
(Citrus aurantium)
|
125 mg |
(Styphnolobium japonicum)
|
125 mg |
(root)
(Angelica sinensis Root Extract)
(4:1 extract, equivalent to 240mg dried root, standardized to 1% ligustilides)
|
60 mg |
(Black Cohosh Rhizome, Root Extract)
(6:1 extract, equivalent to 300mg dried root and rhizome standardized to 2.5% triterpene glycosides)
|
50 mg |
(Vitex agnus-castus )
(fruit)
(10:1 extract, equivalent to 500mg dried fruit)
|
50 mg |
(Dioscorea villosa Root Extract)
(10:1 extract, equivalent to 500mg dried root)
|
50 mg |
(Hypericum perforatum )
(herb top)
(Hypericin)
(10:1 extract, equivalent to 300mg dried herb top, standardized to 0.3% hypericin)
|
30 mg |
(Trifolium pratense )
(flower)
(10:1 extract, equivalent to 200mg dried flower)
|
20 mg |
Hypromellose, Magnesium Stearate (Alt. Name: Mg Stearate), Microcrystalline Cellulose, Silicon Dioxide (Alt. Name: SiO2)
In 2004, Canada began regulating natural medicines as a category of products separate from foods or drugs. These products are officially recognized as "Natural Health Products." These products include vitamins, minerals, herbal preparations, homeopathic products, probiotics, fatty acids, amino acids, and other naturally derived supplements.
In order to be marketed in Canada, natural health products must be licensed. In order to be licensed in Canada, manufacturers must submit applications to Health Canada including information about uses, formulation, dosing, safety, and efficacy.
Products can be licensed based on several criteria. Some products are licensed based on historical or traditional uses. For example, if an herbal product has a history of traditional use, then that product may be acceptable for licensure. In this case, no reliable scientific evidence is required for approval.
For products with non-traditional uses, some level of scientific evidence may be required to support claimed uses. However, a high level of evidence is not necessarily required. Acceptable sources of evidence include at least one well-designed, randomized, controlled trial; well-designed, non-randomized trials; cohort and case control studies; or expert opinion reports.
Finished products licensed by Health Canada must be manufactured according to Good Manufacturing Practices (GMPs) as outlined by Health Canada.
Below is general information about the effectiveness of the known ingredients contained in the product FEM-Matrix. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product FEM-Matrix. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Black cohosh has been safely used in some studies lasting up to a year (15036,15158,17091,19553,35908); however, most studies have lasted only up to 6 months (141,4614,4620,7054,9437,9494,13143,13184,14330,14423)(14424,15037,15889,15893,35824,35852,35853,35858,35865,35897)(35902,35904,35946,35964,95525,103269). There is concern that black cohosh might cause liver damage in some patients. Several case reports link black cohosh to liver failure or autoimmune hepatitis (4383,10692,11906,12006,13144,14469,15160,16721,16722,16723)(16724,16725,16726,16727,35857,107906). However, the evidence that black cohosh causes liver damage is not conclusive (17085). Until more is known, monitor liver function in patients who take black cohosh.
PREGNANCY: POSSIBLY UNSAFE
when used orally in pregnant patients who are not at term.
Black cohosh might have hormonal effects and menstrual and uterine stimulant effects (15035). Theoretically, this might increase the risk of miscarriage; avoid using during pregnancy. There is insufficient reliable information available about the safety of black cohosh when used to induce labor.
LACTATION: POSSIBLY UNSAFE
when used orally.
Black cohosh might have hormonal effects. Theoretically, maternal intake of black cohosh might adversely affect a nursing child (15035). Until more is known, nursing patients should avoid taking black cohosh.
POSSIBLY SAFE ...when used orally and appropriately. Dong quai has been used with apparent safety in a dose of 4.5 grams daily for 24 weeks, or in combination with other ingredients in doses of up to 150 mg daily for up to 6 months (19552,35797). ...when used intravenously as a 25% solution, in a dose of 200-250 mL daily for up to 20 days (48438,48442,48443,48483).
POSSIBLY UNSAFE ...when used orally in large amounts, long-term. Theoretically, long-term use of large amounts of dong quai could be harmful. Dong quai contains several constituents such as bergapten, safrole, and isosafrole that are considered carcinogenic (7162). There is insufficient reliable information available about the safety of dong quai when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Dong quai has uterine stimulant and relaxant effects (8142); theoretically, it could adversely affect pregnancy. Observational research has found that intake of An-Tai-Yin, an herbal combination product containing dong quai and parsley, during the first trimester is associated with an increased risk of congenital malformations of the musculoskeletal system, connective tissue, and eyes (15129).
LACTATION:
Insufficient reliable information available; avoid use.
LIKELY SAFE ...when used orally in amounts found in foods.
POSSIBLY SAFE ...when supplements are used orally and appropriately, short-term. Doses of up to 3 grams daily have been used with apparent safety for up to 3 months (37494,54850,94544,105275,105276).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts found in foods.
PREGNANCY AND LACTATION: POSSIBLY SAFE
when used orally in doses of up to 100 mg daily for 30 days in combination with diosmin.
Some evidence suggests that taking this combination may be associated with placental insufficiency when used during the third trimester of pregnancy; however, the combination does not seem to induce fetal abnormalities, retard fetal growth, increase the risk of intrauterine death, or affect birth weight. Also, when breastfeeding, this combination does not seem to affect infant growth or feeding (54970).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Quercetin has been used with apparent safety in doses up to 1 gram daily for up to 12 weeks (481,1998,1999,16418,16429,16430,16431,96774,96775,96782)(99237,102539,102540,102541,104229,104679,106498,106499,107450,109620)(109621). ...when used intravenously and appropriately. Quercetin has been used with apparent safety in doses less than 945 mg/m2. Higher doses have been reported to cause nephrotoxicity (9564,16418). There is insufficient reliable information available about the safety of quercetin when used topically.
POSSIBLY UNSAFE ...when used intravenously in large amounts. Doses greater than 945 mg/m2 have been reported to cause nephrotoxicity (9564,16418).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly used in foods. Red clover has Generally Recognized As Safe (GRAS) status for use in foods in the US (4912,10372).
POSSIBLY SAFE ...when used orally and appropriately in supplemental amounts. Red clover extracts containing up to 80 mg isoflavones have been used with apparent safety in clinical studies lasting up to 2 years (3375,6127,8925,11089,11091,17091,19540,19556,91524,102901,102840). ...when used topically and appropriately. Red clover extracts have been used topically with apparent safety for up to 4 weeks (102839).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Red clover has estrogenic activity (19555); avoid using. There is insufficient reliable information available about the safety of the topical use of red clover during pregnancy and lactation.
LIKELY SAFE ...when used orally and appropriately. St. John's wort extracts in doses up to 900 mg daily seem to be safe when used for up to 12 weeks (3547,3550,4835,5096,6400,6434,7047,13021,13156,13157)(14417,76143,76144,89666,89669,95510). Some evidence also shows that St. John's wort can be safely used for over one year (13156,13157,76140), and may have better tolerability than selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) (4897,76153,76143,104036).
POSSIBLY SAFE ...when used topically and appropriately. St. John's wort 0.5% extract seems to be safe when used once weekly for 4 weeks (110327). St. John's wort oil has been used with apparent safely twice daily for 6 weeks (110326). However, topical use of St. John's wort can cause photodermatitis with sun exposure (110318).
POSSIBLY UNSAFE ...when used orally in large doses. St. John's wort extract can be unsafe due to the risk of severe phototoxic skin reactions. Taking 2-4 grams of St. John's wort extract (containing hypericin 5-10 mg) daily appears to increase the risk of photosensitivity (758,4631,7808).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Preliminary population research has found that taking St. John's wort while pregnant is associated with offspring that develop neural tube, urinary, and cardiovascular malformations. Subgroup analyses suggest that these risks may be higher when taking St. John's wort during the first trimester when compared with the second or third trimester. However, more research is needed to confirm these findings (106052). Animal-model research also shows that constituents of St. John's wort might have teratogenic effects (9687,15122). Until more is known, St. John's wort should not be taken during pregnancy.
LACTATION: POSSIBLY UNSAFE
when used orally.
Nursing infants of mothers who take St. John's wort have a greater chance of experiencing colic, drowsiness, and lethargy (1377,15122,22418); avoid using.
CHILDREN: POSSIBLY SAFE
when used orally, and appropriately, short-term.
St. John's wort extracts in doses up to 300 mg three times daily seem to be safe when used for up to 8 weeks in children aged 6-17 years (4538,17986,76110).
LIKELY SAFE ...when the fruit extract is used orally and appropriately, short-term. Vitex agnus-castus fruit extract has been used safely in studies at doses up to 40 mg daily, for up to 3 months (7055,7076,7077,7078,7079,12207,13393,15065,90617,90618,96435). There is insufficient reliable information available about the safety of vitex agnus-castus seeds when used orally or topically.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally.
Theoretically, the hormonal effects of vitex agnus-castus might adversely affect pregnancy or lactation (10979,11456,13393,109439). Animal research shows that taking vitex agnus-castus fruit extract when planning to become pregnant or during pregnancy may increase the risk of infertility, low fetal body weight, abortion, and stillbirth (109439); avoid using.
POSSIBLY SAFE ...when used orally. A dose of 50 mg (containing 8 mg diosgenin) has been used with apparent safety for 12 weeks (12,96724). ...when used topically. A wild yam cream has been used with apparent safety for 3 months (10989).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product FEM-Matrix. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Taking black cohosh with atorvastatin might increase the risk for elevated liver function tests.
Details
In one case report, a patient taking atorvastatin (Lipitor) developed significantly elevated liver function enzymes after starting black cohosh 100 mg four times daily. Liver enzymes returned to normal when black cohosh was discontinued (16725). It is unclear whether the elevated liver enzymes were due to black cohosh itself or an interaction between atorvastatin and black cohosh.
|
Theoretically, black cohosh may reduce the clinical effects of cisplatin.
Details
Animal research suggests that black cohosh might decrease the cytotoxic effect of cisplatin on breast cancer cells (13101).
|
Some research suggests that black cohosh might inhibit CYP2D6, but there is conflicting evidence.
Details
Some clinical research suggests that black cohosh might modestly inhibit CYP2D6 and increase levels of drugs metabolized by this enzyme (13536). However, contradictory clinical research shows a specific black cohosh product (Remifemin, Enzymatic Therapy) 40 mg twice daily does not significantly inhibit metabolism of a CYP2D6 substrate in healthy study volunteers (16848). Until more is known, use black cohosh cautiously in patients taking drugs metabolized by CYP2D6.
|
Theoretically, black cohosh may alter the effects of estrogen therapy.
Details
|
Theoretically, taking black cohosh with hepatotoxic drugs may increase the risk of liver damage.
Details
|
Black cohosh may inhibit one form of OATP, OATP2B1, which could reduce the bioavailability and clinical effects of OATP2B1 substrates.
Details
In vitro research shows that black cohosh modestly inhibits OATP2B1 (35450). OATPs are expressed in the small intestine and liver and are responsible for the uptake of drugs and other compounds into the body. Inhibition of OATP may reduce the bioavailability of oral drugs that are substrates of OATP.
|
Theoretically, dong quai may increase the risk of bleeding when used with anticoagulant or antiplatelet drugs; however, research is conflicting.
Details
Animal studies suggest that dong quai has antithrombin activity and inhibits platelet aggregation due to its coumarin components (6048,10057,96137). Additionally, some case reports in humans suggest that dong quai can increase the anticoagulant effects of warfarin (3526,6048,23310,48439). However, clinical research in healthy adults shows that taking 1 gram of dong quai root daily for 3 weeks does not significantly inhibit platelet aggregation or cause bleeding (96137). Until more is known, use dong quai with caution in patients taking antiplatelet/anticoagulant drugs.
|
Theoretically, dong quai may reduce the effects of estrogens.
Details
|
Dong quai may increase the risk of bleeding when used with warfarin.
Details
Case reports suggest that concomitant use of dong quai with warfarin can increase the anticoagulant effects of warfarin and increase the risk of bleeding (3526,6048,23310,48439). In one case, after 4 weeks of taking dong quai 565 mg once or twice daily, the international normalized ratio (INR) increased to 4.9. The INR normalized 4 weeks after discontinuation of dong quai (3526).
|
Theoretically, hesperidin may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
Animal research suggests that hesperetin, a bioflavonoid aglycone derivative of hesperidin, may have antiplatelet activity (54822).
|
Theoretically, taking hesperidin with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, hesperidin may decrease the levels and clinical effects of celiprolol.
Details
Animal research shows that concomitant use of hesperidin may reduce the plasma area under the curve of celiprolol by up to 75% (91760). This effect has not been reported in humans.
|
Theoretically, concomitant use with CNS depressants may cause additive sedative effects.
Details
|
Theoretically, hesperidin may increase the levels and clinical effects of diltiazem.
Details
Animal research suggests that hesperidin may enhance the bioavailability of diltiazem, increasing the plasma area under the curve of diltiazem by up to 65.3% (91761). This effect has not been reported in humans.
|
Theoretically, hesperidin might inhibit P-glycoprotein-mediated drug efflux and potentially increase levels of drugs that are substrates of P-glycoprotein.
Details
In vitro research shows that hesperidin can inhibit P-glycoprotein efflux (54908). This effect has not been reported in humans.
|
Theoretically, hesperidin might increase the levels and clinical effects of verapamil.
Details
Animal research suggests that hesperidin may enhance the bioavailability of verapamil, increasing the plasma area under the curve of verapamil by 96.8% (91762). This effect has not been reported in humans
|
Theoretically, concomitant use of quercetin and antidiabetes drugs might increase the risk of hypoglycemia.
Details
Clinical research suggests that a combination of quercetin, myricetin, and chlorogenic acid reduce levels of fasting glucose in patients with type 2 diabetes, including those already taking antidiabetes agents (96779). The effect of quercetin alone is unknown. |
Theoretically, taking quercetin with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of cyclosporine.
Details
A small study in healthy volunteers shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of a single dose of cyclosporine, possibly due to inhibition of p-glycoprotein or cytochrome P450 3A4 (CYP3A4), which metabolizes cyclosporin (16434). |
Theoretically, concomitant use might increase the levels and adverse effects of CYP2C8 substrates.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of CYP2C9 substrates.
Details
A small clinical study in healthy volunteers shows that taking quercetin 500 mg twice daily for 10 days prior to taking diclofenac, a CYP2C9 substrate, increases diclofenac plasma levels by 75% and prolongs the half-life by 32.5% (97931). Animal research also shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar), a substrate of CYP2C9 (100968). Furthermore, laboratory research shows that quercetin inhibits CYP2C9 (15549,16433). |
Theoretically, concomitant use might increase the levels and adverse effects of CYP2D6 substrates.
Details
|
Theoretically, concomitant use might alter the effects and adverse effects of CYP3A4 substrates.
Details
A small clinical study in healthy volunteers shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of a single dose of cyclosporine (Neoral, Sandimmune), a substrate of CYP3A4 (16434). Animal research also shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar) and quetiapine (Seroquel), substrates of CYP3A4 (100968,104228). Other laboratory research also shows that quercetin inhibits CYP3A4 (15549,16433,16435). However, one clinical study shows that quercetin can increase the metabolism of midazolam, a substrate of CYP3A4, and decrease serum concentrations of midazolam by about 24% in some healthy individuals, suggesting possible induction of CYP3A4 (91573).
|
Theoretically, concomitant use might increase the levels and adverse effects of diclofenac.
Details
A small clinical study in healthy volunteers shows that taking quercetin 500 mg twice daily for 10 days prior to taking diclofenac increases diclofenac plasma levels by 75% and prolongs the half-life by 32.5%. This is thought to be due to inhibition of CYP2C9 by quercetin (97931). |
Theoretically, concomitant use might increase the effects and adverse effects of losartan and decrease the effects of its active metabolite.
Details
Animal research shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar) while decreasing plasma levels of losartan's active metabolite. This metabolite, which is around 10-fold more potent than losartan, is the result of cytochrome P450 (CYP) 2C9- and CYP3A4-mediated transformation of losartan. Additionally, in vitro research shows that quercetin may inhibit P-glycoprotein-mediated efflux of losartan from the intestines, resulting in increased absorption of losartan (100968). These results suggest that concomitant use of quercetin and losartan might increase systemic exposure to losartan while also decreasing plasma concentrations of losartan's active and more potent metabolite. |
Theoretically, concomitant use might decrease the levels and effects of midazolam.
Details
A small clinical study in healthy volunteers shows that quercetin can increase the metabolism of midazolam, with a decrease in AUC of about 24% (91573). |
Theoretically, quercetin might increase the effects and adverse effects of mitoxantrone.
Details
In vitro research shows that quercetin increases the intracellular accumulation and cytotoxicity of mitoxantrone, possibly through inhibition of breast cancer resistance protein (BCRP), of which mitoxantrone is a substrate (107897). So far, this interaction has not been reported in humans.
|
Theoretically, concomitant use might increase the effects and adverse effects of OAT1 substrates.
Details
In vitro research shows that quercetin is a strong non-competitive inhibitor of OAT1, with half-maximal inhibitory concentration (IC50) values less than 10 mcM (104454). So far, this interaction has not been reported in humans. |
Theoretically, concomitant use might increase the effects and adverse effects of OAT3 substrates.
Details
|
Theoretically, concomitant use might increase the effects and adverse effects of OATP substrates.
Details
In vitro evidence shows that quercetin can inhibit organic anion-transporting peptide (OATP) 1B1-mediated uptake of estrone-3-sulfate and pravastatin (91581). Furthermore, clinical research in healthy males shows that intake of quercetin along with pravastatin increases the AUC of pravastatin by 24%, prolongs its half-life by 14%, and decreases its apparent clearance by 18%, suggesting that quercetin modestly inhibits the uptake of pravastatin in hepatic cells (91581). |
Theoretically, concomitant use might alter the effects and adverse effects of P-glycoprotein substrates.
Details
There is preliminary evidence that quercetin inhibits the gastrointestinal P-glycoprotein efflux pump, which might increase the bioavailability and serum levels of drugs transported by the pump (16433,16434,16435,100968,104228). A small study in healthy volunteers reported that pretreatment with quercetin increased bioavailability and plasma levels after a single dose of cyclosporine (Neoral, Sandimmune) (16434). Also, two small studies have shown that quercetin might decrease the absorption of talinolol, a substrate transported by the gastrointestinal P-glycoprotein efflux pump (91579,91580). However, in another small study, several days of quercetin treatment did not significantly affect the pharmacokinetics of saquinavir (Invirase) (16433). The reason for these discrepancies is not entirely clear (91580). Until more is known, use quercetin cautiously in combination with P-glycoprotein substrates. |
Theoretically, concomitant use might increase the effects and adverse effects of pravastatin.
Details
In vitro evidence shows that quercetin can inhibit OATP 1B1-mediated uptake of pravastatin (91581). Also, preliminary clinical research in healthy males shows that intake of quercetin along with pravastatin increases the maximum concentration of pravastatin by 24%, prolongs its half-life by 14%, and decreases its apparent clearance by 18%, suggesting that quercetin modestly inhibits the uptake of pravastatin in hepatic cells (91581).
|
Theoretically, quercetin might increase the effects and adverse effects of prazosin.
Details
In vitro research shows that quercetin inhibits the transcellular efflux of prazosin, possibly through inhibition of breast cancer resistance protein (BCRP), of which prazosin is a substrate. BCRP is an ATP-binding cassette efflux transporter in the intestines, kidneys, and liver (107897). So far, this interaction has not been reported in humans.
|
Theoretically, concomitant use might increase the effects and adverse effects of quetiapine.
Details
Animal research shows that pretreatment with quercetin can increase plasma levels of quetiapine and prolong its clearance, possibly due to inhibition of cytochrome P450 3A4 (CYP3A4) by quercetin. Additionally, the brain-to-plasma ratio of quetiapine concentrations increased, possibly due to inhibition of P-glycoprotein at the blood-brain barrier (104228). This interaction has not been reported in humans.
|
Theoretically, concomitant use might inhibit the effects of quinolone antibiotics.
Details
In vitro, quercetin binds to the DNA gyrase site on bacteria (481), which may interfere with the activity of quinolone antibiotics.
|
Theoretically, quercetin might increase the effects and adverse effects of sulfasalazine.
Details
Animal research shows that quercetin increases the maximum serum concentration (Cmax) and area under the curve (AUC) of sulfasalazine, possibly through inhibition of breast cancer resistance protein (BCRP), of which sulfasalazine is a substrate (107897). So far, this interaction has not been reported in humans.
|
Theoretically, quercetin may increase the risk of bleeding if used with warfarin.
Details
Animal and in vitro studies show that quercetin might increase serum levels of warfarin (17213,109619). Quercetin and warfarin have the same human serum albumin (HSA) binding site, and in vitro research shows that quercetin has stronger affinity for the HSA binding site and can theoretically displace warfarin, causing higher serum levels of warfarin (17213). Animal research shows that taking quercetin for 2 weeks before initiating warfarin increases the maximum serum level of warfarin by 30%, the half-life by 10%, and the overall exposure by 63% when compared with control. Concomitant administration of quercetin and warfarin, without quercetin pre-treatment, also increased these measures, but to a lesser degree. Researchers theorize that inhibition of CYP3A4 by quercetin may explain these effects (109619). So far, this interaction has not been reported in humans.
|
Although some laboratory research suggests that red clover may have anticoagulant and antiplatelet activity, clinical research has not shown this effect.
Details
In vitro research suggests that genistein in red clover has antiplatelet effects, and historically, red clover was thought to have anticoagulant effects due to its coumarin content. However, some experts state that this is unlikely as most natural coumarins have not been shown to have anticoagulant effects, and their content in red clover is low (17091,19557,19558,19559). Additionally, some clinical research in postmenopausal patients found no effect on coagulation or prothrombin time with the use of red clover flowering tops 378 mg daily for 12 months or red clover isoflavone (Rimostil) 50 mg daily for 2 years (17091,91524).
|
Theoretically, soy might reduce the clearance of caffeine; however, a small clinical study found no effect.
Details
Red clover contains genistein. Taking genistein 1 gram daily for 14 days seems to inhibit caffeine clearance and metabolism in healthy females (23582). However, this effect does not seem to occur with the lower amounts of genistein found in red clover. A clinical study in healthy postmenopausal individuals shows that taking red clover capsules standardized to contain 60 mg isoflavones twice daily for 14 days does not affect the pharmacokinetics of caffeine (105693).
|
Theoretically, red clover might increase levels of drugs metabolized by CYP1A2; however, a small clinical study found no effect.
Details
In vitro evidence shows that red clover inhibits CYP1A2 (12479). However, a clinical study in healthy postmenopausal individuals shows that taking red clover capsules standardized to contain 60 mg isoflavones twice daily for 14 days does not affect the pharmacokinetics of caffeine, a CYP1A2 probe substrate (105693).
|
Theoretically, red clover might increase the levels and clinical effects of drugs metabolized by CYP2C19.
Details
In vitro evidence suggests that red clover weakly inhibits CYP2C19 (12479). This interaction has not been reported in humans.
|
Theoretically, red clover might increase levels of drugs metabolized by CYP2C9; however, a small clinical study found no effect.
Details
In vitro evidence suggests that red clover might inhibit CYP2C9 (12479). However, a clinical study in healthy postmenopausal individuals shows that taking red clover capsules standardized to contain 60 mg isoflavones twice daily for 14 days does not affect the pharmacokinetics of tolbutamide, a CYP2C9 probe substrate (105693).
|
Theoretically, red clover might increase levels of drugs metabolized by CYP3A4; however, a small clinical study found no effect.
Details
In vitro evidence shows that red clover might inhibit CYP3A4 isoenzymes (6450,12479). However, a clinical study in healthy postmenopausal individuals shows that taking red clover capsules standardized to contain 60 mg isoflavones twice daily for 14 days does not affect the pharmacokinetics of alprazolam, a CYP3A4 probe substrate (105693).
|
Theoretically, concomitant use of large amounts of red clover might interfere with estrogen therapy.
Details
|
Theoretically, red clover might increase the risk of methotrexate toxicity.
Details
In a case report, a 52-year-old female receiving weekly methotrexate injections for psoriasis developed symptoms of methotrexate toxicity, including severe vomiting and epigastric pain, after three days of taking red clover 430 mg daily. Toxicity resolved after red clover was discontinued. However, no liver function tests or methotrexate levels were reported (91522).
|
Theoretically, the phytoestrogens in red clover might interfere with tamoxifen.
Details
In vitro and animal research suggests that genistein, a constituent of red clover, might antagonize the antitumor effects of tamoxifen (8192). However, there is some evidence from an animal study that red clover does not reduce the efficacy of tamoxifen (102901). Until more is known, tell patients taking tamoxifen to avoid red clover.
|
St. John's wort increases the clearance of alprazolam and decreases its effects.
Details
Alprazolam, which is used as a probe for cytochrome P450 3A4 (CYP3A4) activity, has a two-fold increase in clearance when given with St. John's wort. St. John's wort reduces the half-life of alprazolam from 12.4 hours to 6 hours (10830).
|
St. John's wort may increase the clearance of ambristentan and decrease its effects.
Details
Clinical research in healthy volunteers shows that taking St. John's wort 900 mg daily decreases the area under the concentration-time curve of ambrisentan 5 mg by 17% to 26%. Ambrisentan clearance was increased by 20% to 35% depending on CYP2C19 genotype. However, these small changes are unlikely to be clinically significant (99511).
|
St. John's wort might have additive phototoxic effects with aminolevulinic acid.
Details
Concomitant use with St. John's wort extract may cause synergistic phototoxicity. Delta-aminolevulinic acid can cause a burning erythematous rash and severe swelling of the face, neck, and hands when taken with St. John's wort (9474).
|
St. John's wort might decrease the levels and clinical effects of boceprevir.
Details
Boceprevir increases the maximum concentration and concentration at 8 hours of the St. John's wort constituent, hypericin, by approximately 30%. However, St. John's wort does not significantly change the area under the concentration-time curve or maximum plasma concentration of boceprevir 800 mg three times daily in healthy adults (95507,96552).
|
St. John's wort might reduce the levels and effects of bupropion.
Details
Clinical research shows that taking St. John's wort 325 mg three times daily for 14 days along with bupropion reduces the area under the concentration-time curve by approximately 14% and increases the clearance of bupropion by approximately 20%. This effect is attributed to the induction of cytochrome P450 2B6 (CYP2B6) by St. John's wort (89662).
|
St. John's wort might increase the levels and effects of clopidogrel.
Details
Taking St. John's wort with clopidogrel seems to increase the activity of clopidogrel. In clopidogrel non-responders, taking St. John's wort seems to induce metabolism of clopidogrel to its active metabolite by cytochrome P450 enzymes 3A4 and 2C19. This leads to increased antiplatelet activity (13038,89671,96552). Theoretically, this might lead to an increased risk of bleeding in clopidogrel responders.
|
St. John's wort might decrease the levels and clinical effects of clozapine.
Details
A case report describes a female with schizophrenia controlled on clozapine who had a return of symptoms when she started taking St. John's wort. The plasma concentration of clozapine was reduced, likely because its clearance was increased due to induction of the cytochrome P450 enzymes 3A4, 1A2, 2C9, and 2C19 by St. John's wort (96552).
|
St. John's wort increases the clearance of contraceptive drugs and reduces their clinical effects.
Details
Females taking St. John's wort and oral contraceptives concurrently should use an additional or alternative form of birth control. St. John's wort can decrease norethindrone and ethinyl estradiol levels by 13% to 15%, resulting in breakthrough bleeding, irregular menstrual bleeding, or unplanned pregnancy (11886,11887,13099). Bleeding irregularities usually occur within a week of starting St. John's wort and regular cycles usually return when St. John's wort is discontinued. Unplanned pregnancy has occurred with concurrent use of oral contraceptives and St. John's wort extract (9880). St. John's wort is thought to induce the cytochrome P450 1A2 (CYP1A2), 2C9 (CYP2C9), and 3A4 (CYP3A4) enzymes, which are responsible for metabolism of progestins and estrogens in contraceptives (1292,7809,9204).
|
St. John's wort reduces the levels and clinical effects of cyclosporine.
Details
Concomitant use can decrease plasma cyclosporine levels by 30% to 70% (1234,4826,4831,4834,7808,9596,10628,96552). Using St. John's wort with cyclosporine in patients with heart, kidney, or liver transplants can cause subtherapeutic cyclosporine levels and acute transplant rejection (1234,1293,1301,6112,6435,7808,9596). This interaction has occurred with a St. John's wort extract standardized to 0.3% hypericin and dosed at 300-600 mg per day (6435,10628). Withdrawal of St. John's wort can result in a 64% increase in cyclosporine levels (1234,4513,4826,4831,4834). St. John's wort induces cytochrome P450 3A4 (CYP3A4) and the multi-drug transporter, P-glycoprotein/MDR-1, which increases cyclosporine clearance (1293,1340,9204,9596).
|
St. John's wort may increase the metabolism and reduce the levels of CYP1A2 substrates.
Details
|
St. John's wort may increase the metabolism and reduce the levels of CYP2B6 substrates.
Details
Clinical research shows that taking St. John's wort 325 mg three times daily for 14 days along with bupropion, a CYP2B6 substrate, reduces the area under the concentration-time curve by approximately 14% and increases the clearance of bupropion by approximately 20% (89662).
|
St. John's wort may increase the metabolism and reduce the levels of CYP2C19 substrates.
Details
Preliminary clinical research in healthy males shows that taking St. John's wort for 14 days induces CYP2C19 and increases metabolism of mephenytoin (Mesantoin). In patients with wild-type 2C19 (2C19*1/*1) metabolism was almost 4-fold greater in subjects who received St. John's wort compared to placebo. In contrast, patients with 2C19*2/*2 and *2/*3 genotypes did not demonstrate a similar increase in metabolism (17405). Theoretically, St. John's wort might increase metabolism of other CYP2C19 substrates.
|
St. John's wort may increase the metabolism and reduce the levels of CYP2C9 substrates.
Details
There is contradictory research about the effect of St. John's wort on CYP2C9. Some in vitro research shows that St. John's wort induces CYP2C9, but to a lesser extent than CYP3A4 (9204,10848,11889). St. John's wort also induces metabolism of the S-warfarin isomer, which is a CYP2C9 substrate (11890). Other research shows that St. John's wort 300 mg three times daily for 21 days does not significantly affect the pharmacokinetics of a single 400 mg dose of ibuprofen, which is also a CYP2C9 substrate (15546). Until more is known, use St. John's wort cautiously in patients who are taking CYP2C9 substrates.
|
St. John's wort increases the metabolism and reduces the levels of CYP3A4 substrates.
Details
|
St. John's wort reduces the levels and clinical effects of digoxin.
Details
St. John's wort can reduce the bioavailability, serum levels, and therapeutic effects of digoxin. Taking an extract of St. John's wort 900 mg, containing hyperforin 7.5 mg or more, daily for 10-14 days, can reduce serum digoxin levels by 25% in healthy people. St. John's wort is thought to affect the multidrug transporter, P-glycoprotein, which mediates the absorption and elimination of digoxin and other drugs (382,6473,7808,7810,9204,96552,97171). St. John's wort products providing less than 7.5 mg of hyperforin daily do not appear to affect digoxin levels (97171).
|
St. John's wort reduces the levels and clinical effects of docetaxel.
Details
Clinical research shows that taking a specific St. John's wort product (Hyperiplant, VSM) 300 mg three times daily for 14 days increases docetaxel clearance by about 14%, resulting in decreased plasma concentrations of docetaxel in cancer patients. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (89661).
|
Theoretically, St. John's wort may reduce the levels and clinical effects of fentanyl.
Details
Given that St. John's wort induces cytochrome P450 3A4 (CYP3A4) and P-glycoprotein, it is possible that concomitant use of St. John's wort with fentanyl will reduce plasma levels and analgesic activity of fentanyl (96552). However, some clinical research in healthy adults shows that taking St. John's wort (LI-160, Lichtwer Pharma) 300 mg daily for 21 days does not alter the pharmacokinetics or clinical effects of intravenous fentanyl (102868). It is unclear if these findings can be generalized to oral, intranasal, or transdermal fentanyl.
|
St. John's wort may increase the levels and clinical effects of fexofenadine.
Details
A single dose of St. John's wort decreases the clearance of fexofenadine and increases its plasma levels. However, the effect of St. John's wort on plasma levels of fexofenadine seems to be lost if dosing is continued for more than 2 weeks (9685). Patients taking fexofenadine and St. John's wort concurrently should be monitored for possible fexofenadine toxicity.
|
St. John's wort may reduce the levels and clinical effects of finasteride.
Details
St. John's wort reduces plasma levels of finasteride in healthy male volunteers due to induction of finasteride metabolism via cytochrome P450 3A4 (CYP3A4). The clinical significance of this interaction is not known (96552).
|
St. John's wort may reduce the levels and clinical effects of gliclazide.
Details
Taking St. John's wort decreases the half-life and increases clearance of gliclazide in healthy people (22431).
|
St. John's wort may increase the metabolism and reduce the effectiveness of atorvastatin, lovastatin, and rosuvastatin. However, it does not seem to affect pravastatin, pitavastatin, or fluvastatin.
Details
Concomitant use of St. John's wort can reduce plasma concentrations of the active simvastatin metabolite, simvastatin hydroxy acid, by 28%. St. John's wort induces intestinal and hepatic cytochrome P450 3A4 (CYP3A4) and intestinal P-glycoprotein/MDR-1, a drug transporter. This increases simvastatin clearance. It also increases the clearance of atorvastatin (Lipitor), lovastatin (Mevacor), and rosuvastatin (Crestor). St. John's wort does not seem to affect the plasma concentrations of pravastatin (Pravachol), pitavastatin (Livalo) or fluvastatin (Lescol), which are not substrates of CYP3A4 or P-glycoprotein (10627,96552,97171).
|
St. John's wort reduces the levels and clinical effects of imatinib.
Details
Taking St. John's wort 900 mg daily for 2 weeks reduces the bioavailability and half-life of a single dose of imatinib and decreases its serum levels by 30% in healthy volunteers. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort, which increases clearance of imatinib (11888,96552).
|
St. John's wort may reduce the levels and clinical effects of indinavir.
Details
In healthy volunteers, taking St. John's wort concurrently with indinavir reduces plasma concentrations of indinavir by inducing metabolism via cytochrome P450 3A4 (CYP3A4) (96552). Theoretically, this could result in treatment failure and viral resistance.
|
St. John's wort reduces the levels and clinical effects of irinotecan.
Details
St. John's wort 900 mg daily for 18 days decreases serum levels of irinotecan by at least 50%. Clearance of the active metabolite of irinotecan, SN-38, is also increased, resulting in a 42% decrease in the area under the concentration-time curve (9206,97171). This is thought to be due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (7092,96552).
|
St. John's wort might reduce the levels and clinical effects of ivabradine.
Details
Taking St. John's wort 900 mg containing 7.5 mg of hyperforin daily for 14 days with a single dose of ivabradine causes a 62% reduction in plasma levels of ivabradine. This interaction is thought to be due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort, increasing the metabolism of ivabradine (96552,97171).
|
St. John's wort reduces the levels and clinical effects of ketamine.
Details
Taking St. John's wort 300 mg three times daily for 14 days can decrease maximum serum levels of ketamine by around 66% and area under the concentration-time curve of ketamine by 58%. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (89663).
|
St. John's wort reduces the levels and clinical effects of mephenytoin.
Details
Preliminary clinical research in healthy males shows that taking St. John's wort for 14 days induces cytochrome P450 2C19 (CYP2C19) and significantly increases metabolism of mephenytoin (Mesantoin). In people with wild-type 2C19, metabolism was almost 4-fold greater in subjects who received St. John's wort compared to placebo. In contrast, patients with 2C19*2/*2 and *2/*3 genotypes did not demonstrate a similar increase in metabolism (17405).
|
St. John's wort might reduce the levels and clinical effects of methadone.
Details
St. John's wort might decrease the effectiveness of methadone by reducing its blood concentrations. In one report, two out of four patients on methadone maintenance therapy for addiction experienced methadone withdrawal symptoms after taking St. John's wort 900 mg daily for a median of 31 days. There was a median decrease in blood methadone concentration of 47% (range: 19% to 60%) when compared to baseline (22419).
|
St. John's wort might reduce the levels and clinical effects of methylphenidate.
Details
St. John's wort might decrease the effectiveness of methylphenidate. In one report, an adult male, stabilized on methylphenidate for attention deficit-hyperactivity disorder (ADHD), experienced increased attention problems and ADHD symptoms after taking St. John's wort 600 mg daily for 4 months. ADHD symptoms improved when St. John's wort was discontinued (15544). The mechanism of this interaction is unknown.
|
St. John's wort decreases the levels and clinical effects of NNRTIs.
Details
St. John's wort increases the oral clearance of nevirapine (Viramune) by 35%. Subtherapeutic concentrations are associated with therapeutic failure, development of viral resistance, and development of drug class resistance. St. John's wort induces intestinal and hepatic cytochrome P450 3A4 (CYP3A4) and intestinal P-glycoprotein/MDR-1, a drug transporter (1290,1340,4837,96552).
|
St. John's wort decreases the levels and clinical effects of omeprazole.
Details
Taking St. John's wort, 300 mg orally three times daily for 14 days, reduces serum concentrations of omeprazole by inducing its metabolism via cytochrome P450 (CYP) 2C19 and 3A4. The reduction of omeprazole serum levels is dependent on CYP2C19 genotype, with reductions up to 50% in extensive metabolizers and 38% in poor metabolizers (22440,96552).
|
St. John's wort decreases the levels and clinical effects of oxycodone.
Details
St. John's wort can increase oxycodone metabolism by inducing cytochrome P450 3A4 (CYP3A4), reducing plasma levels and analgesic activity (96552).
|
St. John's wort decreases the levels and clinical effects of P-glycoprotein substrates.
Details
St. John's wort induces P-glycoprotein. P-glycoprotein is a carrier mechanism responsible for transporting drugs and other substances across cell membranes. When P-glycoprotein is induced in the gastrointestinal (GI) tract, it can prevent the absorption of some medications. In addition, induction of p-glycoprotein can decrease entry of drugs into the central nervous system (CNS) and decrease access to other sites of action (382,1340,7810,11722).
|
St. John's wort decreases the levels and clinical effects of phenobarbital.
Details
St. John's wort may increase the metabolism of phenobarbital. Plasma concentrations of phenobarbital should be monitored carefully. The dose of phenobarbital may need to be increased when St. John's wort is started and decreased when it is stopped (9204).
|
St. John's wort decreases the levels and clinical effects of phenprocoumon.
Details
St. John's wort appears to increase the metabolism of phenprocoumon (an anticoagulant that is not available in the US) by increasing the activity of the cytochrome P450 2C9 (CYP2C9) enzyme. This may result in decreases in the anticoagulant effect and international normalized ratio (INR) (9204).
|
St. John's wort decreases the levels and clinical effects of phenytoin.
Details
St. John's wort may increase the metabolism of phenytoin. Plasma concentrations of phenytoin should be monitored closely. The dose of phenytoin may need to be increased when St. John's wort is started and decreased when it is stopped (9204).
|
Theoretically, St. John's wort might increase the likelihood for photosensitivity reactions when used in combination with photosensitizing drugs.
Details
|
Theoretically, St. John's wort might decrease the levels and clinical effects of procainamide.
Details
Animal research shows that taking St. John's wort extract increases the bioavailability of procainamide, but does not increase its metabolism (14865). Whether this interaction is clinically significant in humans is not known.
|
St. John's wort reduces the levels and clinical effects of PIs.
Details
In healthy volunteers, St. John's wort can reduce the plasma concentrations of indinavir (Crixivan) by inducing cytochrome P450 3A4 (CYP3A4). This might result in treatment failure and viral resistance (1290,7808,96552). St. John's wort also induces P-glycoprotein, which can result in decreased intracellular protease inhibitor concentrations and increased elimination (9204).
|
Theoretically, St. John's wort might decrease the effectiveness of reserpine.
Details
Animal research shows that St. John's wort can antagonize the effects of reserpine (758).
|
St. John's wort decreases the levels and clinical effects of rivaroxaban.
Details
A small pharmacokinetic study in healthy volunteers shows that taking a single dose of rivaroxaban 20 mg after using a specific St. John's wort extract (Jarsin, Vifor SA) 450 mg orally twice daily for 14 days reduces the bioavailability of rivaroxaban by 24% and reduces rivaroxaban's therapeutic inhibition of factor Xa by 20% (104038).
|
Theoretically, St. John's wort might inhibit reuptake and increase levels of serotonin, resulting in additive effects with serotonergic drugs.
Details
|
St. John's wort decreases the levels and clinical effects of tacrolimus.
Details
Taking a St. John's wort extract (Jarsin) 600 mg daily significantly decreases tacrolimus serum levels. Dose increases of 60% may be required to maintain therapeutic tacrolimus levels in patients taking St. John's wort. St. John's wort is thought to lower tacrolimus levels by inducing cytochrome P450 3A4 (CYP3A4) enzymes (7095,10329). A small clinical study in healthy adults also shows that taking St. John's wort 300 mg three times daily for 10 days decreases the total systemic exposure to tacrolimus by 27% and 33% after taking a single 5 mg dose of immediate-release or prolonged-release tacrolimus, respectively (113094).
|
St. John's wort might decrease the levels of theophylline, although this effect might not be clinically relevant.
Details
St. John's wort does not seem to significantly affect theophylline pharmacokinetics (11802). There is a single case report of a possible interaction with theophylline. A patient who smoked and was taking 11 other drugs experienced an increase in theophylline levels after discontinuation of St. John's wort. This increase has been attributed to a rebounding of theophylline serum levels after St. John's wort was no longer present to induce metabolism via cytochrome P450 1A2 (CYP1A2) (3556,7808,9204). However, studies in healthy volunteers show that St. John's wort is unlikely to affect theophylline to any clinically significant degree (11802).
|
St. John's wort might decrease the levels and clinical effects of tramadol.
Details
|
St. John's wort might decrease the levels and clinical effects of voriconazole.
Details
Clinical research shows that taking St. John's wort with voriconazole reduces voriconazole exposure and increases voriconazole metabolism by approximately 107%. Voriconazole is primarily metabolized by cytochrome P450 (CYP) 2C19, with CYP3A4 and CYP2C9 also involved (89660). St. John's wort induces CYP2C19, CYP3A4, and CYP2C9 (9204,10830,10847,10848,11889,11890,17405,22423,22424,22425)(22427,48603).
|
St. John's wort decreases the levels and clinical effects of warfarin.
Details
Taking St. John's wort significantly increases clearance of warfarin, including both its R- and S-isomers (11890,15176). This is likely due to induction of cytochrome P450 (CYP) 1A2 and CYP3A4 (11890). St. John's wort can also significantly decrease International Normalized Ratio (INR) in people taking warfarin (1292). In addition, taking warfarin at the same time as St. John's wort might reduce warfarin bioavailability. When a dried extract is mixed with warfarin in an aqueous medium, up to 30% of warfarin is bound to particles, reducing its absorption (10448).
|
St. John's wort might decrease the levels and clinical effects of zolpidem.
Details
|
Theoretically, vitex agnus-castus could interfere with the activity of antipsychotic drugs.
Details
|
Theoretically, vitex agnus-castus could interfere with oral contraceptives.
Details
|
Theoretically, vitex agnus-castus could interfere with dopamine agonists.
Details
Vitex agnus-castus might potentiate the actions of dopaminergic agonists due to possible dopaminergic effects (10122).
|
Theoretically, vitex agnus-castus could interfere with the activity of estrogens.
Details
|
Theoretically, dopaminergic effects of vitex agnus-castus could interfere with metoclopramide.
Details
|
Theoretically, wild yam might increase or decrease the effects of estrogen.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product FEM-Matrix. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, black cohosh is generally well tolerated when used in typical doses.
Most Common Adverse Effects:
Orally: Breast tenderness, dizziness, gastrointestinal upset, headache, irritability, rash, tiredness.
Serious Adverse Effects (Rare):
Orally: Endometrial hyperplasia and hepatotoxicity, although data are conflicting for both.
Cardiovascular
...A single case of reversible bradycardia has been reported for a 59-year-old female who took one tablet of a specific black cohosh product (Remifemin, Schaper & Brümmer) daily for 2 weeks.
The adverse event was considered probably related to black cohosh use, although the exact mechanism by which black cohosh exerted this effect was unclear (35920).
There has been concern that, if black cohosh has estrogen-like effects, it could also potentially cause estrogen-like side effects including increased risk for thromboembolism and cardiovascular disease. These outcomes have not been specifically assessed in long-term trials; however, some research shows that a specific black cohosh extract (CimiPure, PureWorld) does not significantly affect surrogate markers for thromboembolism and cardiovascular risk such as fibrinogen, cholesterol, triglycerides, glucose, or insulin levels compared to placebo (16850).
Dermatologic ...Black cohosh has been associated with skin irritation and rashes (7054,10987,14330,15889,35853). A case report describes a patient who developed cutaneous pseudolymphoma 6 months after starting a specific black cohosh extract (Remifemin). Symptoms resolved within 12 weeks of discontinuing black cohosh (15890).
Gastrointestinal ...Orally, black cohosh can commonly cause gastrointestinal upset (4383,4615,4616,10988,13184,35824,35853,35965,103269,111714). Constipation and indigestion have also been reported (7054,35852).
Genitourinary
...Orally, black cohosh, including the specific black cohosh product Remifemin, may cause vaginal bleeding and breast tenderness in some postmenopausal patients (15889,35824).
However, the frequency of these events seems to be less than that of tibolone, a prescription hormone medication used to treat symptoms of menopause (15889,35904).
Due to the potential estrogen-like effects, there is concern that black cohosh might increase the risk of endometrial hyperplasia. However, a specific black cohosh extract CR BNO 1055 (Klimadynon/Menofem, Bionorica AG) does not appear to cause endometrial hyperplasia. Clinical research in postmenopausal adults shows that taking 40 mg daily of this extract for 12 weeks does not significantly increase superficial cells when compared with placebo, and causes significantly fewer superficial cells when compared with conjugated estrogens (Premarin) (14330). Additional clinical research shows that taking 40 mg daily of this extract for a year does not increase the risk of endometrial hyperplasia or endometrial thickening in postmenopausal adults (15036). Another specific combination product containing black cohosh extract plus St. John's wort (Gynoplus, Jin-Yang Pharm) also does not significantly increase superficial cells compared to placebo after 12 weeks of treatment (15893). Some patients taking tamoxifen plus black cohosh have experienced endometrial hyperplasia and vaginal bleeding. However, these effects are more likely due to tamoxifen than black cohosh (7054).
Hepatic
...There is concern that black cohosh might cause liver disease, hepatotoxicity, or hepatitis.
Adverse effects on the liver have not been documented in clinical studies. However, multiple case reports of liver toxicity, hepatitis, and abnormal liver function have been described in females taking black cohosh products alone or in combination with other herbs or drugs. In some cases, patients developed liver failure and required immediate liver transplantation (4383,10692,11909,12006,13144,14469,15160,16721,16722,16723) (16724,16727,35883,35888,35890,35895,89465,101592,107906). In one case, a female developed autoimmune hepatitis after 3 weeks of taking black cohosh. Symptoms resolved 2 weeks after discontinuing black cohosh (11906). In at least three cases, females have developed elevated liver enzymes and symptoms of hepatotoxicity after taking black cohosh products. Symptoms resolved and liver enzymes normalized within a week of discontinuing black cohosh (16725,16726). Analysis of two liver biopsies suggests that hepatotoxicity associated with black cohosh use results from the accumulation of 4HNE protein adducts in the cytoplasm of liver cells, which promotes the migration of lymphocytes to the affected area and induces an autoimmune response leading to troxis necrosis (89469).
However, many of these cases are poorly documented. Causality is possible based on some reports; however, other reports do not indicate that black cohosh is the probable cause of the events (15891,15892,16722,16723,16727,89465). Hepatitis can occur with no identifiable cause, raising the possibility that black cohosh and hepatitis might have been coincidental in some cases. Also, plant misidentification can occur, resulting in accidental substitution of a hepatotoxic plant (11910). Therefore, some experts argue that these cases do not provide conclusive evidence that black cohosh is responsible for liver disease (17085,35882,111634). Nonetheless, some countries require cautionary labeling on black cohosh products suggesting a risk of liver toxicity. The United States Pharmacopeia also recommends cautionary labeling on black cohosh products (16722). Until more is known about this potential risk, consider monitoring liver function in patients who take black cohosh.
Musculoskeletal
...One patient treated with black cohosh in a clinical trial discontinued treatment due to edema and arthralgia (35897).
Black cohosh has been linked to asthenia and muscle damage in one case. A 54-year-old female experienced asthenia with elevated creatinine phosphokinase (CPK) and lactate dehydrogenase (LDH) levels while taking black cohosh. The patient had taken a specific black cohosh extract (Remifemin) for 1 year, discontinued it for 2 months, restarted it, and then experienced symptoms 2 months later. Symptoms began to resolve 10 days after discontinuing black cohosh (14299).
Neurologic/CNS
...Orally, black cohosh may cause headache, dizziness, or tiredness (35852,35886).
There is one case report of seizures in a female who used black cohosh, evening primrose oil, and chasteberry (10988).
Also, there has been a case report of severe complications, including seizures, renal failure, and respiratory distress, in an infant whose mother was given an unknown dose of black cohosh and blue cohosh at 42 weeks gestation to induce labor (1122,9492,9493). However, this adverse effect may have been attributable to blue cohosh.
In another case report, orobuccolingual dyskinesia, including tongue-biting, eating difficulties, and speech problems, was reported in a 46-year-old female who took two tablets containing black cohosh 20 mg and Panax ginseng 50 mg daily for 15 months. The patient's condition improved after stopping treatment with the herbs and taking clonazepam 2 mg daily with baclofen 40 mg daily (89735).
Ocular/Otic ...There is some concern that black cohosh might increase the risk of retinal vein thrombosis due to its estrogenic activity. In one case, a patient with protein S deficiency and systemic lupus erythematosus (SLE) experienced retinal vein thrombosis 3 days after taking a combination product containing black cohosh 250 mg, red clover 250 mg, dong quai 100 mg, and wild yam 276 mg (13155). It is unclear if this event was due to black cohosh, other ingredients, the combination, or another factor.
Oncologic ...There is some concern that black cohosh may affect hormone-sensitive cancers, such as some types of breast or uterine cancer, due to its potential estrogenic effects. However, evidence from a cohort study suggests that regular use of black cohosh is not associated with the risk of breast or endometrial cancer (17412,111634).
Psychiatric ...A 36-year-old female with a 15-year history of depression developed mania with psychotic and mixed features after taking a black cohosh extract 40 mg daily. The patient gradually recovered after stopping black cohosh and receiving treatment with antipsychotics (104517).
Pulmonary/Respiratory ...There has been a case report of severe complications, including seizures, renal failure, and respiratory distress, in an infant whose mother was given an unknown dose of black cohosh and blue cohosh at 42 weeks gestation to induce labor (1122,9492,9493). However, this adverse effect may have been attributable to blue cohosh.
Renal ...There has been a case report of severe complications, including seizures, renal failure, and respiratory distress, in an infant whose mother was given an unknown dose of black cohosh and blue cohosh at 42 weeks gestation to induce labor (1122,9492,9493). However, this adverse effect may have been attributable to blue cohosh.
Other ...While rare, weight gain has been reported in some patients taking black cohosh. However, in most cases the causality could not be established. A review of the literature, including published case reports, spontaneous reports to adverse event databases, and clinical trials, suggests that black cohosh does not cause weight gain (107907).
General
...Orally, dong quai is generally well-tolerated.
Most Common Adverse Effects:
Orally: Burping and flatulence.
Intravenously: Headache.
Cardiovascular ...Orally, dong quai might cause hypertension; according to one case report, a parent and breastfed infant experienced hypertension (195/85 mmHg and 115/69 mmHg, respectively) after the parent consumed a soup containing dong quai root (48428).
Dermatologic ...Dong quai contains psoralens that may cause photosensitivity and photodermatitis (10054,10057,48461).
Endocrine ...In a case report, a male developed gynecomastia after ingesting dong quai tablets (48504).
Gastrointestinal ...Orally, burping and gas may occur with dong quai (738).
Hematologic ...In one case report, a 55-year-old female with protein S deficiency and systemic lupus erythematosus (SLE) had temporary vision loss in the left eye from hemiretinal vein thrombosis three days after taking a phytoestrogen preparation containing dong quai 100 mg, black cohosh 250 mg, wild Mexican yam 276 mg, and red clover 250 mg (13155). It is unclear if dong quai contributed to this event.
Neurologic/CNS ...Dong quai given orally or by injection may be associated with headache (738,48438).
Oncologic ...Dong quai contains constituents that are carcinogenic; however, whether these constituents are present in concentrations large enough to cause cancer with long-term or high-dose use is unknown (7162).
Pulmonary/Respiratory ...A pharmacist experienced allergic asthma and rhinitis after occupational exposure to dong quai and other herbs (48435).
General ...Orally, hesperidin is generally well tolerated.
Dermatologic ...A case of recurrent allergic dermatitis was reported in a 70-year-old female with no known allergies who applied topical hesperidin methyl chalchone (94538).
Immunologic ...A case of recurrent allergic dermatitis was reported in a 70-year-old female with no known allergies who applied topical hesperidin methyl chalchone (94538).
General ...Orally and intravenously, quercetin seems to be well tolerated in appropriate doses. Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Gastrointestinal ...Intravenous administration of quercetin is associated with nausea and vomiting (9564).
Neurologic/CNS ...Orally, quercetin may cause headache and tingling of the extremities (481,111500). Intravenously, quercetin may cause pain at the injection site. Injection pain can be minimized by premedicating patients with 10 mg of morphine and administering amounts greater than 945 mg/m2 over 5 minutes (9564). In addition, intravenous administration of quercetin is associated with flushing and sweating (9564).
Pulmonary/Respiratory ...Intravenous administration of quercetin at doses as high as 2000 mg/m2 is associated with dyspnea that may persist for up to 5 minutes (9564).
Renal ...Intravenously, nephrotoxicity has been reported with quercetin in amounts greater than 945 mg/m2 (9563,9564,70304).
General
...Orally and topically, red clover seems to be well tolerated.
Most Common Adverse Effects:
Orally: Myalgia, nausea, and vaginal spotting.
Dermatologic ...Orally, a specific red clover isoflavone product (Promensil) has been associated with mild cases of psoriasis and thrush, although a direct causal link has not been established (9552).
Gastrointestinal ...Orally, red clover has been reported to cause nausea (8194).
Genitourinary ...In human research, 80 mg, but not 40 mg, of a specific red clover isoflavone product (Promensil) increased the duration of menstrual cycles in patients with mastalgia (9552). Red clover has also been reported to cause vaginal spotting (8194).
Hematologic ...In one case report, a 53-year-old female had a spontaneous subarachnoid hemorrhage associated with the use of an herbal supplement containing red clover, dong quai, and eleuthero. It is not clear if this was due to red clover, another ingredient, the combination of ingredients, or other factors (70419). In another case report, a 55-year-old female with protein S deficiency and systemic lupus erythematosus (SLE) had temporary vision loss in the left eye from hemiretinal vein thrombosis 3 days after taking a combination phytoestrogen product containing red clover 250 mg, wild yam 276 mg, dong quai 100 mg, and black cohosh 250 mg (13155). It is unclear if red clover contributed to this event.
Musculoskeletal ...Orally, red clover has been reported to cause myalgia (8194).
Neurologic/CNS ...Orally, a specific red clover isoflavone product (Medoflavon) has been associated with headache, although with a similar frequency to placebo (19545).
Oncologic ...Due to potential estrogenic effects of red clover isoflavones, there has been some concern that red clover might increase the risk of estrogen-sensitive cancers such as breast cancer or uterine cancer. A meta-analysis of 8 clinical trials suggests that increased intake of red clover- and soy-derived isoflavones may modestly increase mammographic breast density in premenopausal, but not postmenopausal, adults when compared with placebo. However, in a sub-group analysis assessing only isolated red clover isoflavones, there was no change in breast density (70428). Furthermore, a 2015 review by the European Food Safety Authority (EFSA) reported no increase in risk of breast cancer in females taking isoflavone-containing supplements (91725). Similarly, no effect was found on endometrial thickness and histopathological changes in the uterus after up to 36 months of supplementation with 40-120 mg daily of isoflavones from red clover extract (91725).
General
...Orally, St.
John's wort is generally well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, dizziness, dry mouth, gastrointestinal discomfort (mild), fatigue, headache, insomnia, restlessness, and sedation.
Topically: Skin rash and photodermatitis.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of suicidal ideation and psychosis after taking St. John's wort.
Cardiovascular
...In clinical research, palpitations have been reported for patients taking St.
John's wort orally, although the number of these events was higher for the patients taking sertraline (76070). In one case report, an adult female developed recurrent palpitations and supraventricular tachycardia (SVT) within 3 weeks of initiating St. John's wort 300 mg daily. SVT and related symptoms responded to Valsalva maneuvers and did not recur after discontinuing therapy (106051).
Edema has also been reported in clinical research for some patients treated with St. John's wort 900-1500 mg daily for 8 weeks (10843). Cardiovascular collapse following induction of anesthesia has been reported in an otherwise healthy patient who had been taking St. John's wort for 6 months (8931). A case of St. John's wort-induced hypertension has been reported for a 56-year-old patient who used St. John's wort extract 250 mg twice daily for 5 weeks. Blood pressure normalized after discontinuation of treatment (76073). A case of new-onset orthostatic hypotension and light-headedness has been reported for a 70 year-old homebound patient who was taking multiple prescription medications and herbal products, including St. John's wort (76128). When all herbal products were discontinued, these symptoms improved, and the patient experienced improvement in pain control.
Dermatologic
...Both topical and chronic oral use of St.
John's wort can cause photodermatitis (206,620,758,4628,4631,6477,13156,17986,76072,76148)(95506,110318). The average threshold dose range for an increased risk of photosensitivity appears to be 1.8-4 grams St. John's wort extract or 5-10 mg hypericin, daily. Lower doses might not cause this effect (4542,7808). For example, a single dose of St. John's wort extract 1800 mg (5.4 mg hypericin) followed by 900 mg (2.7 mg hypericin) daily does not seem to produce skin hypericin concentrations thought to be high enough to cause phototoxicity (3900,4542,76266). Females appear to have a higher risk of dose-related photosensitivity. In a dose-ranging, small clinical trial, almost all of the female participants experienced mild to moderate photosensitivity with paresthesia in sun-exposed skin areas after administration of St. John's wort (Jarsin, Casella Med) 1800 mg daily for 3-6 days. Symptoms resolved about 12-16 days after discontinuation (95506). Male participants reported no adverse effects at this dose, and both genders reported no adverse effects at lower doses. Light or fair-skinned people should employ protective measures against direct sunlight when using St. John's wort either topically or orally (628).
Total body erythroderma without exposure to sunlight, accompanied by burning sensation of the skin, has also been reported (8930). Orally, St. John's wort may cause pruritus or skin rash, although these events seem to occur infrequently (76140,76148,76245). A case of persistent scalp and eyebrow hair loss has been reported for a 24-year-old schizophrenic female who was taking olanzapine plus St. John's wort 900 mg/day orally (7811). Also, a case of surgical site irritation has been reported for a patient who applied ointment containing St. John's wort (17225).
Endocrine ...A case of syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in a 67-year-old male with depression has been reported. During a 3-month period, the patient was taking St. John's wort 300 mg daily then increased to 600-900 mg daily with no adverse effects despite a low serum sodium level of 122mEq/L, elevated levels of urine sodium, and urine osmolality suggestive of SIADH. St. John's wort appeared to be the only contributing factor. The patient's sodium level normalized 3 weeks after discontinuation of St. John's wort (95508).
Gastrointestinal ...Orally, St. John's wort may cause dyspepsia, anorexia, diarrhea, nausea, vomiting, and constipation, although these events seems to occur infrequently (4897,13021,17986,76070,76071,76113,76146,76150,76271).
Genitourinary
...Orally, St.
John's wort can cause intermenstrual or abnormal menstrual bleeding (1292,76056). However, this effect has occurred in patients who were also taking an oral contraceptive. Changes in menstrual bleeding might be the result of a drug interaction (1292,76056). Also, St. John's wort has been associated with anorgasmia and frequent urination when used orally (10843,76070).
Sexual dysfunction can occur with St. John's wort, but less frequently than with SSRIs (10843). A case of erectile dysfunction and orgasmic delay has been reported for a 49-year-old male after taking St. John's wort orally for one week. Co-administration of sildenafil 25-50 mg prior to sexual activity reversed the sexual dysfunction. Previously, the patient had experienced orgasmic delay, erectile dysfunction, and inhibited sexual desire when taking a selective serotonin reuptake inhibitor (sertraline) (4836).
Hepatic ...A case of acute hepatitis with prolonged cholestasis and features of vanishing bile duct syndrome has been reported for a patient who used tibolone and St. John's wort orally for 10 weeks (76135). A case of jaundice with transaminitis and hyperbilirubinemia has been reported for a 79 year-old female who used St. John's wort and copaiba (95505). Laboratory values normalized 7 weeks after discontinuation of both products.
Musculoskeletal ...Orally, St. John's wort may cause muscle or joint stiffness, tremor, muscle spasms, or pain, although these events appear to occur rarely (76070).
Neurologic/CNS ...St. John's wort may cause headache, dizziness, fatigue, lethargy, or insomnia (5096,13021,76070,76071,76113,76132,76133,76150,89666). Isolated cases of paresthesia have been reported for patients taking St. John's wort (5073). A case of subacute toxic neuropathy has been reported for a 35-year-old female who took St. John's wort 500 mg daily orally for 4 weeks (621).
Ocular/Otic ...There is concern that taking St. John's wort might increase the risk of cataracts. The hypericin constituent of St. John's wort is photoactive and, in the presence of light, may damage lens proteins, leading to cataracts (1296,17088). In population research, people with cataracts were significantly more likely to have used St. John's wort compared to people without cataracts (17088). Ear and labyrinth disorders have been possibly attributed to use of St. John's wort in clinical research, although these events rarely occur (76120).
Psychiatric
...St.
John's wort can induce hypomania in depressed patients and mania in depressed patients with occult bipolar disorder (325,3524,3555,3568,10845,76047,76064,76137,110318). Cases of first-episode psychosis have been reported for females who used St. John's wort orally. In both cases, symptoms resolved following discontinuation of St. John's wort and treatment with antipsychotics for several weeks (13015,89664). Also, psychosis and delirium have been reported for a 76-year-old female patient who used St. John's wort for 3 weeks. The patient may have been predisposed to this effect due to undiagnosed dementia (76270). Restlessness, insomnia, panic, and anxiety have been noted for some patients taking St. John's wort orally (5073,13156,76070,76132,76268,76269,89665).
In isolated cases, St. John's wort has been associated with a syndrome consisting of extreme anxiety, confusion, nausea, hypertension, and tachycardia. These symptoms may occur within 2-3 weeks after it is started, in patients with no other predisposing factors. This syndrome has been diagnosed as the serotonin syndrome (6201,7811,110318). In one case, the symptoms began after consuming tyramine-containing foods, including aged cheese and red wine (7812). In an isolated case, a 51-year-old female reported having had suicidal and homicidal thoughts for 9 months while taking vitamin C and a St. John's wort extract. Symptoms disappeared within 3 weeks of discontinuing treatment (76111). A case of decreased libido has been reported for a 42-year-old male with mood and anxiety disorders who had taken St. John's wort orally for 9 months (7312).
St. John's wort has been associated with withdrawal effects similar to those found with conventional antidepressants. Headache, nausea, anorexia, dry mouth, thirst, cold chills, weight loss, dizziness, insomnia, paresthesia, confusion, and fatigue have been reported. Withdrawal effects are most likely to occur within two days after discontinuation but can occur one week or more after stopping treatment in some people. Occurrence of withdrawal symptoms may not be related to dose or duration of use (3569,11801).
Pulmonary/Respiratory ...Orally, St. John's wort may cause sore throat, swollen glands, laryngitis, sinus ache, sweating, and hot flashes, although the frequency of these events appears to be similar to placebo (76150).
Renal ...Orally, St. John's wort has been associated with a case report of acute kidney failure in a 46-year-old female after one dose of homemade St. John's wort tea. Three sessions of hemodialysis were required before there was full recovery (106741). However, causality is unclear since the patient had also been taking diclofenac intermittently for a month prior to developing kidney failure.
Other ...Sjogren's syndrome has been reported in a patient taking herbal supplements including St. John's wort, echinacea, and kava. Echinacea may have been the primary cause, because Sjogren's syndrome is an autoimmune disorder. The role of St. John's wort in causing this syndrome is unclear (10319).
General
...Orally, vitex agnus-castus is generally well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, fatigue, headache, insomnia, irregular menstruation, nausea, skin irritation, stomach pain, vomiting.
Dermatologic ...Orally, skin conditions such as itching, irritation, urticaria, rash, acne, eczema, and hair loss have been reported (7055,7076,7078,7079,12207,13393,15065,90617,90619,101981).
Gastrointestinal ...Orally, gastrointestinal upset or pain, diarrhea, and nausea and vomiting, have been reported (7079,12207,13393,15065,90620,101981,101982). In one clinical trial, a single patient reported persistent gastroenteritis while taking vitex agnus-castus (7076). Orally, development of a bezoar resulting in colonic obstruction is described in a 63-year-old male who consumed an unknown amount of vitex agnus-castus seeds (111752).
Genitourinary ...Orally, irregular or prolonged menstrual bleeding has been reported (7055,7079,12207,13393,15065,41489,41490,95326).
Hematologic ...Orally, nosebleed has been reported in a single patient in a clinical trial (7079).
Immunologic ...Orally, multiple abscesses have been reported in a single patient (7055).
Neurologic/CNS ...Orally, headache, fatigue, and insomnia (7076,7078,12207,13393,13395,15065), confusion (90617), and vertigo (7079) have been reported.
Other ...Orally, weight gain has been reported (12207,13393,15065).
General
...Orally, wild yam is generally well tolerated.
Most Common Adverse Effects:
Orally: Fever, headache, upset stomach, and vomiting.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis.
Gastrointestinal ...Orally, wild yam can cause upset stomach and vomiting, especially at higher doses (12,86450).
Hematologic ...In one case report, a 55-year-old female with protein S deficiency and systemic lupus erythematosus (SLE) had temporary vision loss in the left eye from hemiretinal vein thrombosis 3 days after taking a combination phytoestrogen product containing wild yam 276 mg, dong quai 100 mg, red clover 250 mg, and black cohosh 250 mg (13155). It is unclear if wild yam contributed to this event.
Immunologic ...There are three case reports of anaphylaxis after ingestion of cooked wild yam (96722).
Neurologic/CNS ...Orally, wild yam can cause headache and fever, especially at higher doses (86450).