Ingredients | Amount Per Serving |
---|---|
Zychrome(R) Chromium
(as Chromium Dinicocysteinate)
(Zychrome(R) Chromium (Form: as Chromium Dinicocysteinate) )
|
200 mcg |
(Citrus sinensis )
(fruit)
(standardized to Citrus Bioflavonoids)
(DiosVein(TM) Sweet Orange extract (Form: standardized to Citrus Bioflavonoids (Form: including Diosmin, and Hesperidin)) PlantPart: fruit Genus: Citrus Species: sinensis )
|
225 mg |
(standardized to minimum 20% Polyphenols)
(organic InSea2 Brown Seaweed Complex (Form: standardized to minimum 20% Polyphenols) )
|
125 mg |
(Ascophyllum nodosum )
|
|
(Fucus vesiculosus )
|
|
(Momordica charantia )
(fruit)
(standardized to 10% Bitters)
(Bitter Melon standardized extract (Form: standardized to 10% Bitters) PlantPart: fruit Genus: Momordica Species: charantia )
|
100 mg |
(Gymnema sylvestre )
(leaf)
(standardized to 25% Gymnemic Acids)
(organic Gymnema standardized extract (Form: standardized to 25% Gymnemic Acids) PlantPart: leaf Genus: Gymnema Species: sylvestre )
|
75 mg |
Vegetarian Capsule (Form: non-GMO Plant Cellulose)
Below is general information about the effectiveness of the known ingredients contained in the product Healthy Glucose Gold. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Healthy Glucose Gold. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally, short-term. Ascophyllum nodosum dried powder has been used with apparent safety at a dose of up to 500 mg daily for up to 6 months (94996,94997,103900). However, marine products such as Ascophyllum nodosum are known to accumulate heavy metals such as arsenic (94997,94999). Some supplement products are prospectively analyzed to confirm a lack of contaminants and that heavy metal levels are below threshold (94997).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using amounts greater than those found in food.
POSSIBLY SAFE ...when the fruit is used orally and appropriately, short-term. Powdered bitter melon fruit 0.5-12 grams daily for up to 4 months has been used (92126,100631,100632,109583). Extracts of bitter melon fruit have also been used safely for up to 3 months (36,15566,106408). There is insufficient reliable information available about long-term use of bitter melon or the safety of bitter melon when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Animal research shows that two proteins isolated from the raw fruit of bitter melon possess abortifacient properties (3724,35719,35722,35728). Also, one animal study shows that bitter melon juice significantly reduces the fertility rate of mice (35728). However, these effects of bitter melon have not been assessed in humans.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when a specific Ecklonia cava phlorotannin extract (SeaPolynol) is used orally and appropriately. Doses of up to 400 mg daily have been used with apparent safety for 12 weeks (106334,106336). According to the European Food Safety Authority (EFSA), doses of up to 263 mg daily are considered safe based on extrapolation from animal toxicity research (106333). ...when other sources of Ecklonia cava polyphenols are used orally, short-term. Doses up to 144 mg daily have been used with apparent safety for up to 12 weeks (96376). ...when a specific Ecklonia cava polyphenol-rich extract (AG-dieckol, Aqua Green Tech Co.) is used orally and appropriately. Doses of up to 1500 mg daily have been used with apparent safety for up to 12 weeks (96375).
CHILDREN: POSSIBLY SAFE
when a specific Ecklonia cava phlorotannin extract (SeaPolynol) is used orally and appropriately in children 12 years and older.
According to the EFSA, doses of up to 163 mg daily are considered safe in children aged 12-14 years, and 230 mg daily is considered safe in children aged 14 years and above, based on extrapolation from animal toxicity research (106333). There is insufficient reliable information available about the safety of Ecklonia cava in children under 12 years of age.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when applied topically to the skin. A gel containing 1% Fucus vesiculosus extract, applied to the skin twice daily, has been used in clinical research with apparent safety for up to 5 weeks (12799).
POSSIBLY UNSAFE ...when used orally due to its iodine content and possible heavy metal content. Fucus vesiculosus contains up to 0.05% iodine or 226 mcg/gram dry weight (12789,74217). Ingesting more than 150 mcg of iodine daily can cause hyperthyroidism or exacerbate existing hyperthyroidism (12788). Fucus vesiculosus can also contain heavy metals, including cadmium, arsenic, and lead, and can cause heavy metal nephropathy (12789,12800,74213).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally because it may contain iodine and heavy metals (12789,74213,74217); avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Gymnema leaf extract has been used safely in doses of 200 mg twice daily for up to 20 months or 300 mg twice daily for 12 weeks (45,46,42604,105346).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when sweet orange juice or fruit is used orally in amounts commonly found in foods (1310,3340,15171,92309,114401).
POSSIBLY SAFE ...when the essential oil of sweet orange is inhaled as aromatherapy, short-term (35735,58060,90505,105455). There is insufficient reliable information available about the safety of sweet orange peel when used orally.
CHILDREN: LIKELY SAFE
when sweet orange juice or fruit is used orally in amounts commonly found in foods.
CHILDREN: POSSIBLY UNSAFE
when the sweet orange peel is used orally in excessive amounts.
There have been reports of intestinal colic, convulsions, and death in children given large amounts of sweet orange peel (11).
PREGNANCY AND LACTATION: LIKELY SAFE
when sweet orange juice or fruit is used orally in amounts commonly found in foods (1310,3340).
Below is general information about the interactions of the known ingredients contained in the product Healthy Glucose Gold. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, combining Ascophyllum nodosum with amiodarone might cause excessively high iodine levels.
Details
Ascophyllum nodosum contains iodine (94997,95000,95102), although the bioavailability of iodine from Ascophyllum nodosum is lower than that of potassium iodide (94997). Amiodarone contains 37.3% iodine and can increase iodine levels. Concomitant use might increase the risk of having excessive iodine levels and adversely affecting thyroid function (7135,17574). Monitor thyroid function.
|
Due to its iodine content, Ascophyllum nodosum might alter the effects of antithyroid drugs.
Details
Ascophyllum nodosum contains iodine (94997,95000,95102), although the bioavailability of iodine from Ascophyllum nodosum is lower than that of potassium iodide (94997). Iodine in high doses has been reported to cause both hyperthyroidism and hypothyroidism, depending on the individual's past medical history. Taking Ascophyllum nodosum while using antithyroid drugs could alter the effects of the antithyroid drugs (17574).
|
Due to its iodine content, Ascophyllum nodosum might alter the effects of thyroid hormone.
Details
Ascophyllum nodosum contains iodine (94997,95000,95102), although the bioavailability of iodine from Ascophyllum nodosum is lower than that of potassium iodide (94997). Iodine in high doses has been reported to cause both hyperthyroidism and hypothyroidism, depending on the individual's past medical history. Taking Ascophyllum nodosum while using thyroid hormone could alter the effects of thyroid hormone (17574).
|
Taking bitter melon with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, bitter melon might increase levels of P-glycoprotein substrates.
Details
Bitter melon might inhibit the p-glycoprotein (P-gp) intestinal pump and increase intracellular levels of P-gp substrates. In vitro research in intestinal cells shows that 1-monopalmitin, a constituent of bitter melon, increases levels of daunomycin, a P-gp substrate (97509). Additionally, drinking bitter melon juice has been associated with a case of acute pancreatitis in a patient who had been taking pazopanib, a P-gp substrate, for 8 years. Researchers theorize that inhibition of P-gp led to increased levels of pazopanib, resulting in pazopanib-induced pancreatitis (109581).
|
Theoretically, bitter melon might increase levels of pazopanib, potentially increasing the risk of adverse effects.
Details
In one case, a 65-year-old patient taking pazopanib for 8 years for renal cell carcinoma experienced signs and symptoms consistent with acute pancreatitis 4 days after drinking bitter melon juice at a dose of 100-150 mL daily. The patient's symptoms, amylase levels, and lipase levels improved upon discontinuation of bitter melon and pazopanib. Pazopanib treatment was re-initiated with no further evidence of pancreatitis. Researchers theorize that inhibition of P-glycoprotein by bitter melon led to increased levels of pazopanib, a P-glycoprotein substrate, resulting in pazopanib-induced pancreatitis (109581).
|
Theoretically, combining Fucus vesiculosus with amiodarone might cause excessively high iodine levels.
Details
|
Theoretically, taking Fucus vesiculosus with antiplatelet or anticoagulant drugs might increase the risk of bruising and bleeding.
Details
|
Due to its iodine content, Fucus vesiculosus might alter the effects of antithyroid drugs.
Details
Fucus vesiculosus contains high concentrations of iodine (7135). Iodine in high doses has been reported to cause both hyperthyroidism and hypothyroidism, depending on the individual's past medical history. Taking Fucus vesiculosus while using antithyroid drugs could alter the effects of the antithyroid drugs (2138,17574).
|
Theoretically, concomitant use of Fucus vesiculosus with CYP2C8 substrates might increase the risk for adverse effects.
Details
In vitro research shows that fucoidan, a constituent of Fucus vesiculosus, inhibits CYP2C8 (97791). This interaction has not been reported in humans.
|
Theoretically, concomitant use of Fucus vesiculosus with CYP2C9 substrates might increase the risk for adverse effects.
Details
In vitro research shows that fucoidan, a constituent of Fucus vesiculosus, inhibits CYP2C9 (97791). This interaction has not been reported in humans.
|
Theoretically, concomitant use of Fucus vesiculosus with CYP2D6 substrates might alter the effects of these substrates.
Details
In vitro research shows that fucoidan, a constituent of Fucus vesiculosus, both inhibits and induces CYP2D6 (97791). This interaction has not been reported in humans.
|
Theoretically, concomitant use of Fucus vesiculosus with CYP3A4 substrates might increase the risk for adverse effects.
Details
In vitro research shows that fucoidan, a constituent of Fucus vesiculosus, inhibits CYP3A4 (97791). This interaction has not been reported in humans.
|
Concomitant use of Fucus vesiculosus and lithium has resulted in hyperthyroidism.
Details
There is a case of hyperthyroidism occurring in a patient taking Fucus vesiculosus and lithium (74217). Monitor thyroid hormones closely in patients taking lithium and Fucus vesiculosus concomitantly.
|
Due to its iodine content, Fucus vesiculosus might alter the effects of thyroid hormone.
Details
Fucus vesiculosus contains high concentrations of iodine (7135). Iodine in high doses has been reported to cause both hyperthyroidism and hypothyroidism, depending on the individual's past medical history. Taking Fucus vesiculosus while using thyroid hormone could alter the effects of thyroid hormone.
|
Theoretically, taking gymnema with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Gymnema reduces blood glucose levels in some human and animal research. In human studies, it has been shown to enhance the blood glucose lowering effects of hypoglycemic drugs (45,46,92119,92121,92123). However, other research in adults with prediabetes or metabolic syndrome suggests that gymnema does not reduce fasting levels of blood glucose (96235,105346). Until more is known, monitor blood glucose levels closely.
|
Theoretically, gymnema might increase levels of drugs metabolized by CYP1A2.
Details
Animal and in vitro research shows that gymnema can inhibit the CYP1A2 enzyme (96236,96237,96238). In one animal study, oral administration of gymnema for 7 days increased the plasma concentrations of phenacetin, a CYP1A2 substrate, by about 1.4-fold and reduced the clearance of phenacetin by about 29% (96237).
|
Theoretically, gymnema might increase or decrease levels of drugs metabolized by CYP2C9.
Details
|
Theoretically, gymnema might increase levels of drugs metabolized by CYP3A4.
Details
One in vitro study using rat liver microsomes shows that gymnema can modestly inhibit the CYP3A4 enzyme (96238). However, other in vitro research using human liver microsomes shows that gymnema does not affect CYP3A4 activity (96236). Animal research also shows that gymnema does not alter the function of CYP3A4. In one study in rats, oral administration of gymnema for 7 days did not alter the clearance of amlodipine, a CYP3A4 substrate (96237).
|
Theoretically, taking gymnema with phenacetin might increase the levels of phenacetin.
Details
|
Theoretically, taking gymnema with tolbutamide might the decrease levels of tolbutamide.
Details
Animal research shows that gymnema, administered orally for 7 days, increases the clearance of tolbutamide by 2.4-fold when compared to control (96237).
|
Consuming sweet orange with celiprolol can decrease oral absorption of celiprolol.
Details
A pharmacokinetic study in healthy volunteers shows that celiprolol levels, after a single dose of 100 mg, are decreased by up to 90% in people who drink sweet orange juice 200 mL three times daily. It's not known if lower consumption of sweet orange juice will have the same effect. Theoretically, this occurs due to short-term inhibition of organic anion transporting polypeptide (OATP) (12115,17603,17604). Recommend separating drug administration and consumption of sweet orange by at least 4 hours (17603,17604).
|
Consuming sweet orange juice with fexofenadine can decrease oral absorption of fexofenadine.
Details
Clinical research shows that coadministration of sweet orange juice 1200 mL decreases bioavailability of fexofenadine by about 72% (7046,17604). In an animal model, sweet orange juice decreased bioavailability of fexofenadine by 31% (17605). Fexofenadine manufacturer data indicates that concomitant administration of sweet orange juice and fexofenadine results in larger wheal and flare sizes in research models. This suggests that sweet orange reduces the clinical response to fexofenadine (17603). Theoretically, this occurs due to short-term inhibition of organic anion transporting polypeptide (OATP) (7046). Recommend separating drug administration and consumption of sweet orange by at least 4 hours (17603,17604).
|
Consuming sweet orange juice with ivermectin can decrease the oral absorption of ivermectin.
Details
A pharmacokinetic study in healthy volunteers shows that taking ivermectin orally with sweet orange juice 750 mL over 4 hours reduces the bioavailability of ivermectin. This effect does not seem to be related to effects on P-glycoprotein. The effect on ivermectin is more pronounced in males compared to females (12154).
|
Consuming sweet orange juice can decrease oral absorption of OATP substrates. Separate administration by at least 4 hours.
Details
Clinical research shows that consuming sweet orange juice inhibits OATP, which reduces bioavailability of oral drugs that are substrates of OATP (17603,17604). For example, sweet orange juice decreases bioavailability of fexofenadine, a substrate of OATP, by about 72% and of celiprolol, another OATP substrate, by up to 90% (7046,12115). Since sweet orange juice seems to affect OATP for a short time, recommend separating drug administration and consumption of sweet orange juice by at least 4 hours (17603,17604).
|
Sweet orange juice seems to modulate P-glycoprotein (P-gp), which might affect the blood levels of P-gp substrates.
Details
Animal and in vitro research suggest that orange juice extract inhibits drug efflux by P-gp, increasing absorption and levels of P-gp substrates (12116,15327). In contrast, pharmacokinetic research in humans shows that drinking large amounts of sweet orange juice decreases absorption and levels of the P-gp substrate celiprolol. This suggests that orange juice actually induces drug efflux by P-gp or affects drug levels by another mechanism such as inhibiting the gut drug transporter called organic anion transporting polypeptide (OATP) (7046,12115). Until more is known, sweet orange juice should be used cautiously in people taking P-gp substrates.
|
Consuming sweet orange juice with pravastatin can increase the absorption of pravastatin.
Details
A small pharmacokinetic study in healthy volunteers shows that consuming sweet orange juice 800 mL over 3 hours, including before, during, and after taking pravastatin 10 mg, increases pravastatin levels by about 149%, without affecting pravastatin elimination. Theoretically this effect might be due to modulation of organic anion transporting polypeptides (OATPs) by sweet orange juice (14348). Sweet orange juice does not seem to affect simvastatin levels, but it is not known if sweet orange affects any of the other statins.
|
Calcium-fortified sweet orange juice might reduce quinolone absorption.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product Healthy Glucose Gold. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally, Ascophyllum nodosum seems to be generally well-tolerated.
Endocrine ...Orally, taking Ascophyllum nodosum powder 500 mg daily for 14 days has been reported to cause elevated levels of thyroid stimulating hormone (TSH) in 2 of 22 women in a clinical trial. The powder contained 356 mcg iodine per 500 mg. Levels of free thyroxine (T4) were unaffected (94997).
Gastrointestinal ...Orally, Ascophyllum nodosum has been reported to cause stomach discomfort in one clinical trial (94996).
General
...Orally, bitter melon is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, constipation, diarrhea, dizziness, fatigue, flatulence, headache, heartburn, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: Hypoglycemic coma and seizures (in children).
Dermatologic ...In one clinical study, two out of 31 patients taking bitter melon 4 grams daily experienced skin rash. Reports of skin rashes did not occur for patients taking bitter melon 2 grams daily (92126).
Endocrine ...Two cases of hypoglycemic coma have occurred in children after administration of a bitter melon tea (15568).
Gastrointestinal ...The most common adverse effects associated with bitter melon in clinical studies are gastrointestinal, such as heartburn, anorexia, nausea, vomiting, diarrhea, constipation, flatulence, and abdominal discomfort (92126,100632,100633,106408). In one study, these events occurred in about 3% to 16% of patients taking bitter melon (92126).
Neurologic/CNS ...Headaches, dizziness, and fatigue have been reported after the ingestion of bitter melon (15568,92126,100633,112372). In one clinical study, about 5% of patients taking bitter melon 2-4 grams daily reported dizziness (92126). Two cases of seizures have occurred in children after administration of a bitter melon tea (15568).
Renal ...In one case report, a 60-year-old female was diagnosed with acute interstitial nephritis after a gradual decline in renal function over 9 months. The patient later admitted to taking bitter melon extract 600 mg daily for 3 months followed by 1200 mg daily for 4 months for diabetes. Upon discontinuation of bitter melon and treatment with prednisolone, serum creatinine levels returned to baseline within 3 months (109582).
General ...Orally, Ecklonia cava extract and Ecklonia cava polyphenols seem to be well tolerated.
Dermatologic ...Orally, alopecia has been reported by one person in a clinical trial (106335).
Gastrointestinal ...Orally, nausea, dyspepsia, and diarrhea have been reported by one person each in a clinical trial (106335).
General
...When used orally, Fucus vesiculosus may be unsafe due to its iodine content.
Topically, Fucus vesiculosus appears to be well tolerated.
Most Common Adverse Effects:
Orally: Goiter, hyperthyroidism, hypothyroidism.
Serious Adverse Effects (Rare):
Orally: Thyroid cancer.
Cardiovascular ...In one report, a young adult with obesity developed palpitations and syncope after taking an oral weight loss supplement containing a combination of Fucus vesiculosus, dandelion, and boldo for 3 weeks. The patient was found to have a prolonged QT interval on ECG and frequent episodes of sustained polymorphic ventricular tachycardia (14321). It is not clear whether Fucus vesiculosus, another ingredient, or the combination of ingredients is responsible for this adverse effect. The product was not analyzed to determine the presence of any potential toxic contaminants.
Endocrine
...Orally, Fucus vesiculosus can cause or exacerbate hyperthyroidism due to its high iodine content (12789,13061,74217).
One case of hyperthyroidism has been reported for a 60-year-old patient taking lithium for bipolar disorder and a combination product containing Fucus vesiculosus 0.125 grams, cascara 0.170 grams, and Frangula 0.222 grams per tablet for laxative purposes. The patient had been taking one tablet of the combination laxative product daily for several years. Following discontinuation of the supplement, thyroid levels normalized (74217). Similar cases of hyperthyroidism have been reported for patients taking other seaweed-containing herbal supplements (Dream Shape; Ever Youth). Analyses of these supplements shows that these products contain triiodothyronine 1 mcg and thyroxine 3-4 mcg. In addition to seaweed, Dream Shape also contains hydrangea vine, maltose, chrysanthemum, Chinese matrimony vine, and sucrose, while Ever Youth contains radish, lotus leaf, chrysanthemum, hawthorn, senna tea, and Chinese matrimony vine (13061).
Orally, prolonged use of Fucus vesiculosus has been associated with hypothyroidism (13664). The iodine in Fucus vesiculosus can cause idiosyncratic reactions.
According to the Institute of Medicine Food and Nutrition Board, prolonged, high dietary intake of iodine is associated with goiter and an increased risk of thyroid cancer (7135).
Genitourinary ...A case of hemorrhagic cystitis characterized by dysuria and polyuria has been reported in a young adult who took a specific product (Slim-Kombu, Balestra and Mech) containing Fucus vesiculosus and 19 other herbal extracts orally for weight loss. Upon discontinuation, symptoms improved (46959). It is unclear if this effect was due to Fucus vesiculosus or other ingredients in the supplement.
Renal ...A case of hemorrhagic cystitis characterized by dysuria and polyuria has been reported in a young adult who took a specific product (Slim-Kombu, Balestra and Mech) containing Fucus vesiculosus and 19 other herbal extracts orally for weight loss. Upon discontinuation, symptoms improved (46959). It is unclear if this effect was due to Fucus vesiculosus or other ingredients in the supplement. Nephrotoxicity has been associated with oral intake of Fucus vesiculosus that was contaminated with arsenic (12800).
General ...Orally, gymnema seems to be well tolerated.
Hepatic ...A case of drug-induced hepatitis characterized by weakness, fatigue, jaundice, and elevated liver enzymes, has been reported for a patient who consumed gymnema tea three times daily for 10 days. The patient was administered prednisone 60 mg once daily and was eventually tapered off prednisone and discharged. Laboratory values normalized after 6 months (95005). A case of hepatitis-associated aplastic anemia characterized by jaundice, elevated liver function tests, and pancytopenia has been reported for a patient who consumed gymnema 2 grams twice daily for at least a month. Treatment with ursodeoxycholic acid for 8 weeks led to resolution of cholestatic hepatitis; however, the pancytopenia was not responsive to treatment with immunosuppressive drugs and the patient died 5 months after presentation (110021). The exact reason for these adverse effects is not clear; they may have been idiosyncratic.
General ...Orally, sweet orange juice or fruit seem to be well tolerated. Large amounts of sweet orange peel may be unsafe, especially for children. When inhaled, sweet orange essential oil seems to be generally well tolerated.
Gastrointestinal ...There have been reports of intestinal colic in children following ingestion of large amounts of sweet orange peel (11).
Neurologic/CNS ...There have been reports of convulsions in children following ingestion of large amounts of sweet orange peel (11).