Ingredients | Per Serving |
---|---|
Proprietary Blend of Extracts (Herb/Botanical)
|
1.25 mL |
(fruit)
|
|
(fruit)
|
|
(root bark)
|
|
(root)
|
|
(root)
|
|
(herb)
|
|
(leaf)
|
|
(herb)
|
|
Skullcap
(herb)
|
Vegetable Glycerine, distilled Water, organic Grain Alcohol Note: approx. 5%
Below is general information about the effectiveness of the known ingredients contained in the product Anti-Inflammatory. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Anti-Inflammatory. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately in amounts commonly found in foods. Bilberry has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes. Bilberry fruit extracts have been used with apparent safety in clinical trials at a dose of up to 160 mg daily for up to 6 months (39,40,8139,9739,14280,35472,35510,35512,103190,104192,104195). A higher bilberry extract dose of 1.4 grams daily has been used with apparent safety for up to 4 weeks (104194). Whole bilberries or bilberry juice have also been consumed with apparent safety in quantities of 100-160 grams daily for up to 35 days (35463,91506).
POSSIBLY UNSAFE ...when the leaves are used orally in high doses or for a prolonged period. Death can occur with chronic use of 1.5 gram/kg daily (2).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts commonly found in foods.
However, there is insufficient reliable information available about the safety of bilberry when used in medicinal amounts during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally in amounts typically found in food. Capsicum has Generally Recognized as Safe (GRAS) status in the US (4912). ...when used topically and appropriately (7038,10650,105345). The active capsicum constituent capsaicin is an FDA-approved ingredient used in certain over-the-counter, topical preparations (272).
POSSIBLY SAFE ...when used orally and appropriately, short-term in medicinal amounts. A specific sustained-release chili extract (Capsifen) has been used safely in doses of up to 200 mg daily, for up to 28 days (105196). ...when used intranasally and appropriately, short-term. Capsicum-containing nasal sprays, suspensions, and swabs seem to be safe when applied multiple times over 24 hours or when applied daily or every other day for up to 14 days. Although no serious side effects have been reported in clinical trials, intranasal application of capsicum-containing products can be very painful (14322,14324,14328,14329,14351,14352,14353,14356,14357) (14358,14359,14360,15016,105204). POSSIBLY UNSAFE when used orally, long-term or in high doses. There is concern that long-term use or use of excessive doses might be linked to hepatic or kidney damage, as well as hypertensive crisis (12404,40569,40606). There is insufficient reliable information available about the safety of capsicum when injected.
CHILDREN: POSSIBLY UNSAFE
when used topically in children under 2 years old (272).
There is insufficient reliable information available about the safety of capsicum when used orally in children.
PREGNANCY: LIKELY SAFE
when used topically and appropriately (272).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
Capsicum 5 mg daily has been used for up to 28 days during the latter half of the second trimester and the third trimester (96457).
LACTATION: LIKELY SAFE
when used topically and appropriately (272).
LACTATION: POSSIBLY UNSAFE
when used orally.
Dermatitis can sometimes occur in infants when foods heavily spiced with capsicum peppers are ingested during lactation (739). Also, observational research suggests that intake of raw capsicum peppers during pregnancy is associated with an increased risk of sensitization to inhalant allergens in children by the age of 2 years (41021).
POSSIBLY SAFE ...when used orally and appropriately. Devil's claw extract has been used with apparent safety in doses of up to 2400 mg daily for up 12 weeks (6472,8608,14332,14418,47112,47114,47116,47117,47155). There is insufficient reliable information available about the safety of devil's claw when used orally long-term or when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Anecdotal evidence suggests that devil's claw has oxytocic effects in humans. Also, in vitro research shows that moderate to high doses of devil's claw root extract induce contractions of isolated uterine muscle from pregnant and nonpregnant rats (94689); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when the fruit is consumed orally in food amounts (13527). There is insufficient reliable information available about the safety of European barberry when used orally in medicinal amounts or when used topically.
CHILDREN: LIKELY UNSAFE
when used orally in newborns.
The berberine constituent of European barberry can cause kernicterus in newborns, particularly preterm neonates with hyperbilirubinemia (2589). There is insufficient reliable information available about the safety of European barberry when used orally in older children.
PREGNANCY: LIKELY UNSAFE
when used orally.
Berberine is thought to cross the placenta and may cause harm to the fetus. Kernicterus has developed in newborn infants exposed to berberine (2589).
LACTATION: LIKELY UNSAFE
when used orally.
Berberine and other harmful constituents can be transferred to the infant through breast milk (2589).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Licorice has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes. Licorice flavonoid oil 300 mg daily for 16 weeks, and deglycyrrhizinated licorice products in doses of up to 4.5 grams daily for up to 16 weeks, have been used with apparent safety (6196,11312,11313,17727,100984,102960). ...when licorice products containing glycyrrhizin are used orally in low doses, short-term. Licorice extract 272 mg, containing glycyrrhizin 24.3 mg, has been used daily with apparent safety for 6 months (102961). A licorice extract 1000 mg, containing monoammonium glycyrrhizinate 240 mg, has been used daily with apparent safety for 12 weeks (110320). In addition, a syrup providing licorice extract 750 mg has been used twice daily with apparent safety for 5 days (104558). ...when applied topically. A gel containing 2% licorice root extract has been applied to the skin with apparent safety for up to 2 weeks. (59732). A mouth rinse containing 5% licorice extract has been used with apparent safety four times daily for up to one week (104564).
POSSIBLY UNSAFE ...when licorice products containing glycyrrhizin are used orally in large amounts for several weeks, or in smaller amounts for longer periods of time. The European Scientific Committee on Food recommends that a safe average daily intake of glycyrrhizin should not exceed 10 mg (108577). In otherwise healthy people, consuming glycyrrhizin daily for several weeks or longer can cause severe adverse effects including pseudohyperaldosteronism, hypertensive crisis, hypokalemia, cardiac arrhythmias, and cardiac arrest. Doses of 20 grams or more of licorice products, containing at least 400 mg glycyrrhizin, are more likely to cause these effects; however, smaller amounts have also caused hypokalemia and associated symptoms when taken for months to years (781,3252,15590,15592,15594,15596,15597,15599,15600,16058)(59731,59740,59752,59785,59786,59787,59792,59795,59805,59811)(59816,59818,59820,59822,59826,59828,59849,59850,59851,59867)(59882,59885,59888,59889,59895,59900,59906,97213,110305). In patients with hypertension, cardiovascular or kidney conditions, or a high salt intake, as little as 5 grams of licorice product or 100 mg glycyrrhizin daily can cause severe adverse effects (15589,15593,15598,15600,59726).
PREGNANCY: UNSAFE
when used orally.
Licorice has abortifacient, estrogenic, and steroid effects. It can also cause uterine stimulation. Heavy consumption of licorice, equivalent to 500 mg of glycyrrhizin per week (about 250 grams of licorice per week), during pregnancy seems to increase the risk of delivery before gestational age of 38 weeks (7619,10618). Furthermore, high intake of glycyrrhizin, at least 500 mg per week, during pregnancy is associated with increased salivary cortisol levels in the child by the age of 8 years. This suggests that high intake of licorice during pregnancy may increase hypothalamic-pituitary-adrenocortical axis activity in the child (26434); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. St. John's wort extracts in doses up to 900 mg daily seem to be safe when used for up to 12 weeks (3547,3550,4835,5096,6400,6434,7047,13021,13156,13157)(14417,76143,76144,89666,89669,95510). Some evidence also shows that St. John's wort can be safely used for over one year (13156,13157,76140), and may have better tolerability than selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) (4897,76153,76143,104036).
POSSIBLY SAFE ...when used topically and appropriately. St. John's wort 0.5% extract seems to be safe when used once weekly for 4 weeks (110327). St. John's wort oil has been used with apparent safely twice daily for 6 weeks (110326). However, topical use of St. John's wort can cause photodermatitis with sun exposure (110318).
POSSIBLY UNSAFE ...when used orally in large doses. St. John's wort extract can be unsafe due to the risk of severe phototoxic skin reactions. Taking 2-4 grams of St. John's wort extract (containing hypericin 5-10 mg) daily appears to increase the risk of photosensitivity (758,4631,7808).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Preliminary population research has found that taking St. John's wort while pregnant is associated with offspring that develop neural tube, urinary, and cardiovascular malformations. Subgroup analyses suggest that these risks may be higher when taking St. John's wort during the first trimester when compared with the second or third trimester. However, more research is needed to confirm these findings (106052). Animal-model research also shows that constituents of St. John's wort might have teratogenic effects (9687,15122). Until more is known, St. John's wort should not be taken during pregnancy.
LACTATION: POSSIBLY UNSAFE
when used orally.
Nursing infants of mothers who take St. John's wort have a greater chance of experiencing colic, drowsiness, and lethargy (1377,15122,22418); avoid using.
CHILDREN: POSSIBLY SAFE
when used orally, and appropriately, short-term.
St. John's wort extracts in doses up to 300 mg three times daily seem to be safe when used for up to 8 weeks in children aged 6-17 years (4538,17986,76110).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Verbena has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912). There is insufficient reliable information available about the safety of verbena when used orally or topically in medicinal amounts.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of verbena in medicinal amounts during pregnancy and lactation; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Anti-Inflammatory. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, bilberry fruit extract might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, bilberry leaf or fruit extract may increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
Animal research suggests that bilberry leaf extract might have blood glucose-lowering activity (1264). Also, one small clinical trial in patients with type 2 diabetes shows that taking bilberry fruit extract 470 mg as a single dose prior to an oral glucose tolerance test lowers plasma glucose levels when compared with placebo (91507).
|
Theoretically, bilberry fruit extract might decrease levels of drugs metabolized by CYP2E1.
Details
Animal research shows that exposure to small concentrations of bilberry extract in drinking water for around one month increased CYP2E1 activity by 31%. However, exposure over a 2-month period did not increase CYP2E1 activity (103191). This effect has not been reported in humans.
|
Theoretically, bilberry fruit extract might reduce the efficacy of erlotinib.
Details
In vitro research suggests that bilberry fruit extract and its constituents, delphinidin and delphinidin-3-O-glucoside, inhibit the activity of erlotinib (97031). This interaction has not been reported in humans.
|
Theoretically, using topical capsaicin may increase the risk of ACE inhibitor-induced cough.
Details
There is one case report of a topically applied capsaicin cream contributing to the cough reflex in a patient using an ACEI (12414). However, it is unclear if this interaction is clinically significant.
|
Theoretically, capsicum may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
In vitro research shows that capsicum might increase the effects of antiplatelet drugs (12406,12407). Also, population research shows that capsicum is associated with an increased risk of self-reported bleeding in patients taking warfarin (12405,20348). However, clinical research shows that taking a single dose of capsaicin (Asian Herbex Ltd.), the active ingredient in capsicum, 400-800 mcg orally in combination with aspirin 500 mg does not decrease platelet aggregation when compared with taking aspirin 500 mg alone. Also, there was no notable effect on measures of platelet aggregation with capsaicin (92990). It is unclear whether capsaicin must be used in more than a single dose to affect platelet aggregation.
|
Theoretically, taking capsicum with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Preliminary clinical research shows that consuming capsicum 5 grams along with a glucose drink attenuates the rise in plasma glucose after 30 minutes by 21%, decreases the 2-hour postprandial area under the curve of plasma glucose by 11%, and increases the 2-hour postprandial area under the curve of plasma insulin by 58% in healthy individuals when compared with placebo (40453,40614). Other clinical research shows that taking capsicum 5 mg daily for 28 days significantly reduces postprandial blood glucose and insulin levels, but not fasting blood glucose and insulin levels, in patients with gestational diabetes (96457).
|
Theoretically, taking capsicum with aspirin might reduce the bioavailability of aspirin.
Details
Animal research shows that acute or chronic intake of capsicum pepper reduces oral aspirin bioavailability (22617). This has not been shown in humans.
|
Theoretically, taking capsicum with ciprofloxacin might increase levels and adverse effects of ciprofloxacin.
Details
Animal research shows that concomitant use of capsaicin, the active constituent of capsicum, and ciprofloxacin increases the bioavailability of ciprofloxacin by up to 70% (22613).
|
Theoretically, taking capsicum with theophylline might increase the levels and adverse effects of theophylline.
Details
|
Theoretically, devil's claw might increase levels of drugs metabolized by CYP2C19.
Details
In vitro research shows that devil's claw might inhibit CYP2C19, although this has not been reported in humans (12479).
|
Theoretically, devil's claw might increase levels of drugs metabolized by CYP2C9.
Details
In vitro research shows that devil's claw might inhibit CYP2C9, although this has not been reported in humans (12479).
|
Theoretically, devil's claw might increase levels of drugs metabolized by CYP3A4.
Details
In vitro research shows that devil's claw might inhibit CYP3A4, although this has not been reported in humans (12479).
|
Theoretically, devil's claw might decrease the effectiveness of H2-blockers.
Details
Devil's claw has been reported to increase stomach acid, which might interfere with the effects of H2-blockers (19).
|
Theoretically, devil's claw might increase levels of P-glycoprotein substrates.
Details
|
Theoretically, devil's claw might decrease the effectiveness of PPIs.
Details
Devil's claw has been reported to increase stomach acid, which might interfere with the effects of PPIs (19).
|
Theoretically, Devil's claw might increase the activity of warfarin.
Details
In one case report, purpura occurred in a patient taking warfarin and devil's claw concurrently. This might indicate over-anticoagulation (613). It is unclear if this was due to Devil's claw or other contributing factors.
|
Theoretically, taking European barberry with anticholinergic drugs might cause additive effects.
Details
In vitro evidence suggests that European barberry might have anticholinergic properties (13527).
|
Theoretically, European barberry may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, taking European barberry with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Preliminary clinical evidence suggests that European barberry juice reduces fasting glucose levels in patients with type 2 diabetes who are also taking antidiabetes drugs (98575). Additionally, some animal studies show that berberine, a constituent of European barberry, has antiglycemic potential (33622,33667). Monitor blood glucose levels closely.
|
Theoretically, taking European barberry with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, taking European barberry with cholinergic drugs might decrease the effects of cholinergic drugs.
Details
In vitro evidence suggests that European barberry might have anticholinergic properties (13527).
|
Theoretically, concomitant use with drugs that have sedative properties may cause additive effects.
Details
|
Theoretically, concomitant use with cyclosporine may cause additive effects.
Details
Berberine, a constituent of European barberry, can reduce the metabolism and increase serum levels of cyclosporine. This effect is attributed to the ability of berberine to inhibit cytochrome P450 3A4 (CYP3A4), which metabolizes cyclosporine (13524). Theoretically, European barberry might have a similar effect.
|
Theoretically, European barberry might increase the levels and clinical effects of CYP3A4 substrates.
Details
There is very preliminary evidence suggesting that berberine, a constituent of European barberry, might inhibit the CYP3A4 enzyme (13524). Theoretically, European barberry might have a similar effect.
|
Theoretically, licorice might reduce the effects of antihypertensive drugs.
Details
|
Theoretically, licorice might reduce the effects of cisplatin.
Details
In animal research, licorice diminished the therapeutic efficacy of cisplatin (59763).
|
Theoretically, concomitant use of licorice and corticosteroids might increase the side effects of corticosteroids.
Details
Case reports suggest that concomitant use of licorice and oral corticosteroids, such as hydrocortisone, can potentiate the duration of activity and increase blood levels of corticosteroids (3252,12672,20040,20042,48429,59756). Additionally, in one case report, a patient with neurogenic orthostatic hypertension stabilized on fludrocortisone 0.1 mg twice daily developed pseudohyperaldosteronism after recent consumption of large amounts of black licorice (108568).
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2B6.
Details
In vitro research shows that licorice extract and glabridin, a licorice constituent, inhibit CYP2B6 isoenzymes (10300,94822). Licorice extract from the species G. uralensis seems to inhibit CYP2B6 isoenzymes to a greater degree than G. glabra extract in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2B6; however, these interactions have not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C19.
Details
In vitro, licorice extracts from the species G. glabra and G. uralensis inhibit CYP2C19 isoenzymes in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C19; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C8.
Details
In vitro, licorice extract from the species G. glabra and G. uralensis inhibits CYP2C8 isoenzymes (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C8; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP2C9.
Details
There is conflicting evidence about the effect of licorice on CYP2C9 enzyme activity. In vitro research shows that extracts from the licorice species G. glabra and G. uralensis moderately inhibit CYP2C9 isoenzymes (10300,94822). However, evidence from an animal model shows that licorice extract from the species G. uralensis can induce hepatic CYP2C9 activity (14441). Until more is known, licorice should be used cautiously in people taking CYP2C9 substrates.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP3A4.
Details
Pharmacokinetic research shows that the licorice constituent glycyrrhizin, taken in a dosage of 150 mg orally twice daily for 14 days, modestly decreases the area under the concentration-time curve of midazolam by about 20%. Midazolam is a substrate of CYP3A4, suggesting that glycyrrhizin modestly induces CYP3A4 activity (59808). Animal research also shows that licorice extract from the species G. uralensis induces CYP3A4 activity (14441). However, licorice extract from G. glabra species appear to inhibit CYP3A4-induced metabolism of testosterone in vitro. It is thought that the G. glabra inhibits CYP3A4 due to its constituent glabridin, which is a moderate CYP3A4 inhibitor in vitro and not present in other licorice species (10300,94822). Until more is known, licorice should be used cautiously in people taking CYP3A4 substrates.
|
Theoretically, concomitant use of licorice with digoxin might increase the risk of cardiac toxicity.
Details
Overuse or misuse of licorice with cardiac glycoside therapy might increase the risk of cardiac toxicity due to potassium loss (10393).
|
Theoretically, concomitant use of licorice with diuretic drugs might increase the risk of hypokalemia.
Details
Overuse of licorice might compound diuretic-induced potassium loss (10393,20045,20046,59812). In one case report, a 72-year-old male with a past medical history of hypertension, type 2 diabetes, hyperlipidemia, arrhythmia, stroke, and hepatic dysfunction was hospitalized with severe hypokalemia and uncontrolled hypertension due to pseudohyperaldosteronism. This was thought to be provoked by concomitant daily consumption of a product containing 225 mg of glycyrrhizin, a constituent of licorice, and hydrochlorothiazide 12.5 mg for 1 month (108577).
|
Theoretically, licorice might increase or decrease the effects of estrogen therapy.
Details
|
Theoretically, loop diuretics might increase the mineralocorticoid effects of licorice.
Details
Theoretically, loop diuretics might enhance the mineralocorticoid effects of licorice by inhibiting the enzyme that converts cortisol to cortisone; however, bumetanide (Bumex) does not appear to have this effect (3255).
|
Theoretically, licorice might increase levels of methotrexate.
Details
Animal research suggests that intravenous administration of glycyrrhizin, a licorice constituent, and high-dose methotrexate may delay methotrexate excretion and increase systemic exposure, leading to transient elevations in liver enzymes and total bilirubin (108570). This interaction has not yet been reported in humans.
|
Theoretically, licorice might decrease levels of midazolam.
Details
In humans, the licorice constituent glycyrrhizin appears to moderately induce the metabolism of midazolam (59808). This is likely due to induction of cytochrome P450 3A4 by licorice. Until more is known, licorice should be used cautiously in people taking midazolam.
|
Theoretically, licorice might decrease the absorption of P-glycoprotein substrates.
Details
In vitro research shows that licorice can increase P-glycoprotein activity (104561).
|
Theoretically, licorice might decrease plasma levels and clinical effects of paclitaxel.
Details
Multiple doses of licorice taken concomitantly with paclitaxel might reduce the effectiveness of paclitaxel. Animal research shows that licorice 3 grams/kg given orally for 14 days before intravenous administration of paclitaxel decreases the exposure to paclitaxel and increases its clearance. Theoretically, this occurs because licorice induces cytochrome P450 3A4 enzymes, which metabolize paclitaxel. Notably, a single dose of licorice did not affect exposure or clearance of paclitaxel (102959).
|
Theoretically, licorice might decrease plasma levels and clinical effects of warfarin.
Details
Licorice seems to increase metabolism and decrease levels of warfarin in animal models. This is likely due to induction of cytochrome P450 2C9 (CYP2C9) metabolism by licorice (14441). Advise patients taking warfarin to avoid taking licorice.
|
St. John's wort increases the clearance of alprazolam and decreases its effects.
Details
Alprazolam, which is used as a probe for cytochrome P450 3A4 (CYP3A4) activity, has a two-fold increase in clearance when given with St. John's wort. St. John's wort reduces the half-life of alprazolam from 12.4 hours to 6 hours (10830).
|
St. John's wort may increase the clearance of ambristentan and decrease its effects.
Details
Clinical research in healthy volunteers shows that taking St. John's wort 900 mg daily decreases the area under the concentration-time curve of ambrisentan 5 mg by 17% to 26%. Ambrisentan clearance was increased by 20% to 35% depending on CYP2C19 genotype. However, these small changes are unlikely to be clinically significant (99511).
|
St. John's wort might have additive phototoxic effects with aminolevulinic acid.
Details
Concomitant use with St. John's wort extract may cause synergistic phototoxicity. Delta-aminolevulinic acid can cause a burning erythematous rash and severe swelling of the face, neck, and hands when taken with St. John's wort (9474).
|
St. John's wort might decrease the levels and clinical effects of boceprevir.
Details
Boceprevir increases the maximum concentration and concentration at 8 hours of the St. John's wort constituent, hypericin, by approximately 30%. However, St. John's wort does not significantly change the area under the concentration-time curve or maximum plasma concentration of boceprevir 800 mg three times daily in healthy adults (95507,96552).
|
St. John's wort might reduce the levels and effects of bupropion.
Details
Clinical research shows that taking St. John's wort 325 mg three times daily for 14 days along with bupropion reduces the area under the concentration-time curve by approximately 14% and increases the clearance of bupropion by approximately 20%. This effect is attributed to the induction of cytochrome P450 2B6 (CYP2B6) by St. John's wort (89662).
|
St. John's wort might increase the levels and effects of clopidogrel.
Details
Taking St. John's wort with clopidogrel seems to increase the activity of clopidogrel. In clopidogrel non-responders, taking St. John's wort seems to induce metabolism of clopidogrel to its active metabolite by cytochrome P450 enzymes 3A4 and 2C19. This leads to increased antiplatelet activity (13038,89671,96552). Theoretically, this might lead to an increased risk of bleeding in clopidogrel responders.
|
St. John's wort might decrease the levels and clinical effects of clozapine.
Details
A case report describes a female with schizophrenia controlled on clozapine who had a return of symptoms when she started taking St. John's wort. The plasma concentration of clozapine was reduced, likely because its clearance was increased due to induction of the cytochrome P450 enzymes 3A4, 1A2, 2C9, and 2C19 by St. John's wort (96552).
|
St. John's wort increases the clearance of contraceptive drugs and reduces their clinical effects.
Details
Females taking St. John's wort and oral contraceptives concurrently should use an additional or alternative form of birth control. St. John's wort can decrease norethindrone and ethinyl estradiol levels by 13% to 15%, resulting in breakthrough bleeding, irregular menstrual bleeding, or unplanned pregnancy (11886,11887,13099). Bleeding irregularities usually occur within a week of starting St. John's wort and regular cycles usually return when St. John's wort is discontinued. Unplanned pregnancy has occurred with concurrent use of oral contraceptives and St. John's wort extract (9880). St. John's wort is thought to induce the cytochrome P450 1A2 (CYP1A2), 2C9 (CYP2C9), and 3A4 (CYP3A4) enzymes, which are responsible for metabolism of progestins and estrogens in contraceptives (1292,7809,9204).
|
St. John's wort reduces the levels and clinical effects of cyclosporine.
Details
Concomitant use can decrease plasma cyclosporine levels by 30% to 70% (1234,4826,4831,4834,7808,9596,10628,96552). Using St. John's wort with cyclosporine in patients with heart, kidney, or liver transplants can cause subtherapeutic cyclosporine levels and acute transplant rejection (1234,1293,1301,6112,6435,7808,9596). This interaction has occurred with a St. John's wort extract standardized to 0.3% hypericin and dosed at 300-600 mg per day (6435,10628). Withdrawal of St. John's wort can result in a 64% increase in cyclosporine levels (1234,4513,4826,4831,4834). St. John's wort induces cytochrome P450 3A4 (CYP3A4) and the multi-drug transporter, P-glycoprotein/MDR-1, which increases cyclosporine clearance (1293,1340,9204,9596).
|
St. John's wort may increase the metabolism and reduce the levels of CYP1A2 substrates.
Details
|
St. John's wort may increase the metabolism and reduce the levels of CYP2B6 substrates.
Details
Clinical research shows that taking St. John's wort 325 mg three times daily for 14 days along with bupropion, a CYP2B6 substrate, reduces the area under the concentration-time curve by approximately 14% and increases the clearance of bupropion by approximately 20% (89662).
|
St. John's wort may increase the metabolism and reduce the levels of CYP2C19 substrates.
Details
Preliminary clinical research in healthy males shows that taking St. John's wort for 14 days induces CYP2C19 and increases metabolism of mephenytoin (Mesantoin). In patients with wild-type 2C19 (2C19*1/*1) metabolism was almost 4-fold greater in subjects who received St. John's wort compared to placebo. In contrast, patients with 2C19*2/*2 and *2/*3 genotypes did not demonstrate a similar increase in metabolism (17405). Theoretically, St. John's wort might increase metabolism of other CYP2C19 substrates.
|
St. John's wort may increase the metabolism and reduce the levels of CYP2C9 substrates.
Details
There is contradictory research about the effect of St. John's wort on CYP2C9. Some in vitro research shows that St. John's wort induces CYP2C9, but to a lesser extent than CYP3A4 (9204,10848,11889). St. John's wort also induces metabolism of the S-warfarin isomer, which is a CYP2C9 substrate (11890). Other research shows that St. John's wort 300 mg three times daily for 21 days does not significantly affect the pharmacokinetics of a single 400 mg dose of ibuprofen, which is also a CYP2C9 substrate (15546). Until more is known, use St. John's wort cautiously in patients who are taking CYP2C9 substrates.
|
St. John's wort increases the metabolism and reduces the levels of CYP3A4 substrates.
Details
|
St. John's wort reduces the levels and clinical effects of digoxin.
Details
St. John's wort can reduce the bioavailability, serum levels, and therapeutic effects of digoxin. Taking an extract of St. John's wort 900 mg, containing hyperforin 7.5 mg or more, daily for 10-14 days, can reduce serum digoxin levels by 25% in healthy people. St. John's wort is thought to affect the multidrug transporter, P-glycoprotein, which mediates the absorption and elimination of digoxin and other drugs (382,6473,7808,7810,9204,96552,97171). St. John's wort products providing less than 7.5 mg of hyperforin daily do not appear to affect digoxin levels (97171).
|
St. John's wort reduces the levels and clinical effects of docetaxel.
Details
Clinical research shows that taking a specific St. John's wort product (Hyperiplant, VSM) 300 mg three times daily for 14 days increases docetaxel clearance by about 14%, resulting in decreased plasma concentrations of docetaxel in cancer patients. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (89661).
|
Theoretically, St. John's wort may reduce the levels and clinical effects of fentanyl.
Details
Given that St. John's wort induces cytochrome P450 3A4 (CYP3A4) and P-glycoprotein, it is possible that concomitant use of St. John's wort with fentanyl will reduce plasma levels and analgesic activity of fentanyl (96552). However, some clinical research in healthy adults shows that taking St. John's wort (LI-160, Lichtwer Pharma) 300 mg daily for 21 days does not alter the pharmacokinetics or clinical effects of intravenous fentanyl (102868). It is unclear if these findings can be generalized to oral, intranasal, or transdermal fentanyl.
|
St. John's wort may increase the levels and clinical effects of fexofenadine.
Details
A single dose of St. John's wort decreases the clearance of fexofenadine and increases its plasma levels. However, the effect of St. John's wort on plasma levels of fexofenadine seems to be lost if dosing is continued for more than 2 weeks (9685). Patients taking fexofenadine and St. John's wort concurrently should be monitored for possible fexofenadine toxicity.
|
St. John's wort may reduce the levels and clinical effects of finasteride.
Details
St. John's wort reduces plasma levels of finasteride in healthy male volunteers due to induction of finasteride metabolism via cytochrome P450 3A4 (CYP3A4). The clinical significance of this interaction is not known (96552).
|
St. John's wort may reduce the levels and clinical effects of gliclazide.
Details
Taking St. John's wort decreases the half-life and increases clearance of gliclazide in healthy people (22431).
|
St. John's wort may increase the metabolism and reduce the effectiveness of atorvastatin, lovastatin, and rosuvastatin. However, it does not seem to affect pravastatin, pitavastatin, or fluvastatin.
Details
Concomitant use of St. John's wort can reduce plasma concentrations of the active simvastatin metabolite, simvastatin hydroxy acid, by 28%. St. John's wort induces intestinal and hepatic cytochrome P450 3A4 (CYP3A4) and intestinal P-glycoprotein/MDR-1, a drug transporter. This increases simvastatin clearance. It also increases the clearance of atorvastatin (Lipitor), lovastatin (Mevacor), and rosuvastatin (Crestor). St. John's wort does not seem to affect the plasma concentrations of pravastatin (Pravachol), pitavastatin (Livalo) or fluvastatin (Lescol), which are not substrates of CYP3A4 or P-glycoprotein (10627,96552,97171).
|
St. John's wort reduces the levels and clinical effects of imatinib.
Details
Taking St. John's wort 900 mg daily for 2 weeks reduces the bioavailability and half-life of a single dose of imatinib and decreases its serum levels by 30% in healthy volunteers. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort, which increases clearance of imatinib (11888,96552).
|
St. John's wort may reduce the levels and clinical effects of indinavir.
Details
In healthy volunteers, taking St. John's wort concurrently with indinavir reduces plasma concentrations of indinavir by inducing metabolism via cytochrome P450 3A4 (CYP3A4) (96552). Theoretically, this could result in treatment failure and viral resistance.
|
St. John's wort reduces the levels and clinical effects of irinotecan.
Details
St. John's wort 900 mg daily for 18 days decreases serum levels of irinotecan by at least 50%. Clearance of the active metabolite of irinotecan, SN-38, is also increased, resulting in a 42% decrease in the area under the concentration-time curve (9206,97171). This is thought to be due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (7092,96552).
|
St. John's wort might reduce the levels and clinical effects of ivabradine.
Details
Taking St. John's wort 900 mg containing 7.5 mg of hyperforin daily for 14 days with a single dose of ivabradine causes a 62% reduction in plasma levels of ivabradine. This interaction is thought to be due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort, increasing the metabolism of ivabradine (96552,97171).
|
St. John's wort reduces the levels and clinical effects of ketamine.
Details
Taking St. John's wort 300 mg three times daily for 14 days can decrease maximum serum levels of ketamine by around 66% and area under the concentration-time curve of ketamine by 58%. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (89663).
|
St. John's wort reduces the levels and clinical effects of mephenytoin.
Details
Preliminary clinical research in healthy males shows that taking St. John's wort for 14 days induces cytochrome P450 2C19 (CYP2C19) and significantly increases metabolism of mephenytoin (Mesantoin). In people with wild-type 2C19, metabolism was almost 4-fold greater in subjects who received St. John's wort compared to placebo. In contrast, patients with 2C19*2/*2 and *2/*3 genotypes did not demonstrate a similar increase in metabolism (17405).
|
St. John's wort might reduce the levels and clinical effects of methadone.
Details
St. John's wort might decrease the effectiveness of methadone by reducing its blood concentrations. In one report, two out of four patients on methadone maintenance therapy for addiction experienced methadone withdrawal symptoms after taking St. John's wort 900 mg daily for a median of 31 days. There was a median decrease in blood methadone concentration of 47% (range: 19% to 60%) when compared to baseline (22419).
|
St. John's wort might reduce the levels and clinical effects of methylphenidate.
Details
St. John's wort might decrease the effectiveness of methylphenidate. In one report, an adult male, stabilized on methylphenidate for attention deficit-hyperactivity disorder (ADHD), experienced increased attention problems and ADHD symptoms after taking St. John's wort 600 mg daily for 4 months. ADHD symptoms improved when St. John's wort was discontinued (15544). The mechanism of this interaction is unknown.
|
St. John's wort decreases the levels and clinical effects of NNRTIs.
Details
St. John's wort increases the oral clearance of nevirapine (Viramune) by 35%. Subtherapeutic concentrations are associated with therapeutic failure, development of viral resistance, and development of drug class resistance. St. John's wort induces intestinal and hepatic cytochrome P450 3A4 (CYP3A4) and intestinal P-glycoprotein/MDR-1, a drug transporter (1290,1340,4837,96552).
|
St. John's wort decreases the levels and clinical effects of omeprazole.
Details
Taking St. John's wort, 300 mg orally three times daily for 14 days, reduces serum concentrations of omeprazole by inducing its metabolism via cytochrome P450 (CYP) 2C19 and 3A4. The reduction of omeprazole serum levels is dependent on CYP2C19 genotype, with reductions up to 50% in extensive metabolizers and 38% in poor metabolizers (22440,96552).
|
St. John's wort decreases the levels and clinical effects of oxycodone.
Details
St. John's wort can increase oxycodone metabolism by inducing cytochrome P450 3A4 (CYP3A4), reducing plasma levels and analgesic activity (96552).
|
St. John's wort decreases the levels and clinical effects of P-glycoprotein substrates.
Details
St. John's wort induces P-glycoprotein. P-glycoprotein is a carrier mechanism responsible for transporting drugs and other substances across cell membranes. When P-glycoprotein is induced in the gastrointestinal (GI) tract, it can prevent the absorption of some medications. In addition, induction of p-glycoprotein can decrease entry of drugs into the central nervous system (CNS) and decrease access to other sites of action (382,1340,7810,11722).
|
St. John's wort decreases the levels and clinical effects of phenobarbital.
Details
St. John's wort may increase the metabolism of phenobarbital. Plasma concentrations of phenobarbital should be monitored carefully. The dose of phenobarbital may need to be increased when St. John's wort is started and decreased when it is stopped (9204).
|
St. John's wort decreases the levels and clinical effects of phenprocoumon.
Details
St. John's wort appears to increase the metabolism of phenprocoumon (an anticoagulant that is not available in the US) by increasing the activity of the cytochrome P450 2C9 (CYP2C9) enzyme. This may result in decreases in the anticoagulant effect and international normalized ratio (INR) (9204).
|
St. John's wort decreases the levels and clinical effects of phenytoin.
Details
St. John's wort may increase the metabolism of phenytoin. Plasma concentrations of phenytoin should be monitored closely. The dose of phenytoin may need to be increased when St. John's wort is started and decreased when it is stopped (9204).
|
Theoretically, St. John's wort might increase the likelihood for photosensitivity reactions when used in combination with photosensitizing drugs.
Details
|
Theoretically, St. John's wort might decrease the levels and clinical effects of procainamide.
Details
Animal research shows that taking St. John's wort extract increases the bioavailability of procainamide, but does not increase its metabolism (14865). Whether this interaction is clinically significant in humans is not known.
|
St. John's wort reduces the levels and clinical effects of PIs.
Details
In healthy volunteers, St. John's wort can reduce the plasma concentrations of indinavir (Crixivan) by inducing cytochrome P450 3A4 (CYP3A4). This might result in treatment failure and viral resistance (1290,7808,96552). St. John's wort also induces P-glycoprotein, which can result in decreased intracellular protease inhibitor concentrations and increased elimination (9204).
|
Theoretically, St. John's wort might decrease the effectiveness of reserpine.
Details
Animal research shows that St. John's wort can antagonize the effects of reserpine (758).
|
St. John's wort decreases the levels and clinical effects of rivaroxaban.
Details
A small pharmacokinetic study in healthy volunteers shows that taking a single dose of rivaroxaban 20 mg after using a specific St. John's wort extract (Jarsin, Vifor SA) 450 mg orally twice daily for 14 days reduces the bioavailability of rivaroxaban by 24% and reduces rivaroxaban's therapeutic inhibition of factor Xa by 20% (104038).
|
Theoretically, St. John's wort might inhibit reuptake and increase levels of serotonin, resulting in additive effects with serotonergic drugs.
Details
|
St. John's wort decreases the levels and clinical effects of tacrolimus.
Details
Taking a St. John's wort extract (Jarsin) 600 mg daily significantly decreases tacrolimus serum levels. Dose increases of 60% may be required to maintain therapeutic tacrolimus levels in patients taking St. John's wort. St. John's wort is thought to lower tacrolimus levels by inducing cytochrome P450 3A4 (CYP3A4) enzymes (7095,10329). A small clinical study in healthy adults also shows that taking St. John's wort 300 mg three times daily for 10 days decreases the total systemic exposure to tacrolimus by 27% and 33% after taking a single 5 mg dose of immediate-release or prolonged-release tacrolimus, respectively (113094).
|
St. John's wort might decrease the levels of theophylline, although this effect might not be clinically relevant.
Details
St. John's wort does not seem to significantly affect theophylline pharmacokinetics (11802). There is a single case report of a possible interaction with theophylline. A patient who smoked and was taking 11 other drugs experienced an increase in theophylline levels after discontinuation of St. John's wort. This increase has been attributed to a rebounding of theophylline serum levels after St. John's wort was no longer present to induce metabolism via cytochrome P450 1A2 (CYP1A2) (3556,7808,9204). However, studies in healthy volunteers show that St. John's wort is unlikely to affect theophylline to any clinically significant degree (11802).
|
St. John's wort might decrease the levels and clinical effects of tramadol.
Details
|
St. John's wort might decrease the levels and clinical effects of voriconazole.
Details
Clinical research shows that taking St. John's wort with voriconazole reduces voriconazole exposure and increases voriconazole metabolism by approximately 107%. Voriconazole is primarily metabolized by cytochrome P450 (CYP) 2C19, with CYP3A4 and CYP2C9 also involved (89660). St. John's wort induces CYP2C19, CYP3A4, and CYP2C9 (9204,10830,10847,10848,11889,11890,17405,22423,22424,22425)(22427,48603).
|
St. John's wort decreases the levels and clinical effects of warfarin.
Details
Taking St. John's wort significantly increases clearance of warfarin, including both its R- and S-isomers (11890,15176). This is likely due to induction of cytochrome P450 (CYP) 1A2 and CYP3A4 (11890). St. John's wort can also significantly decrease International Normalized Ratio (INR) in people taking warfarin (1292). In addition, taking warfarin at the same time as St. John's wort might reduce warfarin bioavailability. When a dried extract is mixed with warfarin in an aqueous medium, up to 30% of warfarin is bound to particles, reducing its absorption (10448).
|
St. John's wort might decrease the levels and clinical effects of zolpidem.
Details
|
In vitro research suggests that beta-myrcene, a terpene constituents of verbena, can significantly inhibit cytochrome P450 2B1 (CYP2B1) enzyme activity (82024). Theoretically, verbena might increase levels of drugs metabolized by this enzyme. However, this interaction has not been reported in humans.
Details
Some substrates of CYP2B1 include cyclophosphamide, ifosfamide, barbiturates, bromobenzene, and others.
|
Below is general information about the adverse effects of the known ingredients contained in the product Anti-Inflammatory. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, bilberry fruit, juice, and extracts seem to be well tolerated.
Most Common Adverse Effects:
Orally: Dark-colored stools, flatulence, and gastrointestinal discomfort.
Gastrointestinal
...In one small clinical trial, mild-to-moderate flatulence was reported in 33% of patients taking sieved bilberries and concentrated bilberry juice (91506).
However, the patients in this study had ulcerative colitis, and the study lacked a control group, limiting the validity of this finding. In another small clinical study of males with age-related cognitive impairment, temporary adverse gastrointestinal (GI) effects were reported in 13% of patients drinking a combination of bilberry and grape juice. However, the adverse GI effect rate was identical in patients drinking a placebo juice (110641). A post-marketing surveillance report of 2295 patients using bilberry extract (Tegens) found that 1% of patients complained of GI discomfort and less than 1% experienced nausea or heartburn (35500).
Theoretically, fresh bilberry fruit may have laxative effects. One clinical trial noted an increased frequency of bowel movements following the administration of a combination formulation containing aerial agrimony parts, cinnamon quills, powdered bilberry fruit, and slippery elm bark (35462). It is unclear if these effects were due to bilberry, other ingredients, or the combination.
Other ...Orally, bilberry may cause discoloration of feces and the tongue. In one study, a dark-bluish to black discoloration of both the feces and the tongue was observed following consumption of sieved bilberries and concentrated bilberry juice. In one patient, a slight discoloration of the teeth has also been observed (91506). In another study, 50% of patients reported dark green stools after taking bilberry extract 700 mg twice daily for 4 weeks (104194).
General
...Orally, capsicum is generally well tolerated in amounts typically found in food or when the extract is used in doses of up to 200 mg daily.
Topically and intranasally, capsaicin, a constituent of capsicum, is generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, bloating, burning, diarrhea, dyspepsia, gas, headache, mild constipation, nausea, rhinorrhea, skin flushing, and sweating.
Serious Adverse Effects (Rare):
Orally: Cases of myocardial infarction and hypertensive crisis have been reported.
Cardiovascular
...Orally, palpitation was reported in one clinical trial (105196).
One case of myocardial infarction has been reported in a 41-year-old male without cardiovascular risk factors; the event was attributed to the use of an oral capsicum pepper pill that the patient had been taking for weight loss (40768). Another case of coronary vasospasm and acute myocardial infarction has been reported for a healthy 29-year-old male; the event was attributed to the use of a topical capsicum-containing patch that the patient had been applying to the middle of the back for 6 days (40658). Two cases of arterial hypertensive crisis have been reported for individuals who ingested a large amount of peppers and chili peppers the day before. One of the patients also had an acute myocardial infarction, and the other had high levels of thyroid stimulating hormone (40569,40606).
Dermatologic
...Orally, capsicum or its constituent capsaicin may cause urticaria and skin wheals in rare cases (96457,105203).
Topically, capsicum can cause a prickling sensation, itching, pain, burning, edema, stinging, irritation, rash, and erythema. About 1 in 10 patients who use capsaicin topically discontinue treatment because of adverse effects. These effects seem to occur more often with topical formulations containing higher concentrations of capsaicin, the active constituent of capsicum. Side effects tend to diminish with continued use (12401,15260,15261,40358,40439,40483,40547,40676,40682,40719)(40784,40847,92979,92983,92984,96453,105193,105197,105202,111514). In one case, application of a capsaicin 8% patch (Qutenza) for 60 minutes caused a second-degree burn, characterized by burning, erythema, severe pain, and blistering at the administration site. The burn was treated with topical corticosteroids, but 9 months later neuropathic pain persisted, resulting in limited mobility. It is unclear whether the mobility sequalae were caused by topical capsaicin or the patient's pre-existing neurological disorders (111514). Skin contact with fresh capsicum fruit can also cause irritation or contact dermatitis (12408).
Intranasally, capsaicin can cause nasal burning and pain in most patients. It also often causes lacrimation, sneezing, and excessive nasal secretion; however, these side effects appear to diminish with repeat applications (14323,14329,14358). In some cases, the burning sensation disappears after 5-8 applications (14351,14358). In some cases, patients are pretreated with intranasal lidocaine to decrease the pain of intranasal capsaicin treatment. However, even with lidocaine pretreatment, patients seem to experience significant pain (14324).
Gastrointestinal
...Orally, capsicum can cause upper abdominal discomfort, including irritation, fullness, dyspepsia, gas, bloating, nausea, epigastric pain and burning, anal burning, diarrhea, mild constipation, and belching (12403,12410,40338,40427,40456,40503,40560,40584,40605,40665)(40718,40725,40745,40808,40828,96456,96457,105194,105196).
There is a case report of a 3-year-old female who experienced a burning and swollen mouth and lips after touching the arm of a parent that had been treated with a capsaicin patch and then placing the fingers in the mouth (105199). Excessive amounts of capsaicin can lead to gastroenteritis and hepatic necrosis (12404). In a case report, a 40-year-old male with diabetes consumed white wine daily and chewed cayenne which was thought to result in black teeth stains and loss of enamel (40809). Some preliminary research links ingestion of capsaicin with stomach and gallbladder cancer; however the link may be due to contamination of capsaicin products with carcinogens (40771).
Topically, capsaicin can cause diarrhea and vomiting (105202).
Immunologic ...In a case report, a 34-year-old female had anaphylaxis involving difficulty breathing and stupor and also urticaria after consuming a red bell pepper, which is in the capsicum genus. The causal chemical was theorized to be 1,3-beta-glucanase (92978). In another case report, a 33-year-old female experienced angioedema, difficulty breathing and swallowing, and urticaria after ingesting raw green and red peppers (92982).
Neurologic/CNS ...Orally, capsicum can cause sweating and flushing of the head and neck, lacrimation, headache, faintness, and rhinorrhea (7005,12410,105196,105203). Topically, applying capsaicin can cause headache (96450,105202). Injection of capsaicin into the intermetatarsal space has also been associated with headache (96454).
Ocular/Otic
...Topically, capsicum can be extremely irritating to the eyes and mucous membranes.
Capsicum oleoresin, an oily extract in pepper self-defense sprays, causes intense eye pain. It can also cause erythema, blepharospasm, tearing, shortness of breath, and blurred vision. In rare cases, corneal abrasions have occurred (12408,12409,40345,40348,40383,40720,40857).
Inhalation of capsicum can cause eye irritation, and allergic alveolitis (5885). In a case report, a 38-year-old female had acute anterior uveitis that developed about 12 hours after using a specific patch (Isola Capsicum N Plus) that contained capsaicin 1.5 mg per patch and methyl salicylate 132 mg per patch for neck pain. The uveitis was controlled with topical steroids and did not recur (92977).
Oncologic ...Population research suggests that moderate to high intake of capsaicin, the active constituent of capsicum, is associated with an increased risk of gastric cancer, while low intake is associated with a decreased risk. It is not clear from the study what amount of capsaicin is considered high versus low intake (92988). Additionally, some research suggests that any link may be due to contamination of capsaicin products with carcinogens (40771).
Pulmonary/Respiratory
...Orally, difficulty breathing was reported in a clinical trial (105196).
Topically, nasopharyngitis related to the use of a cream containing capsaicin has been reported (105202).
Inhalation of capsicum and exposure to capsicum oleoresin spray can cause cough, dyspnea, pain in the nasal passages, sneezing, rhinitis, and nasal congestion (5885,15016,40522,40546,40647). In rare cases, inhalation of the capsicum oleoresin or pepper spray has caused cyanosis, apnea, respiratory arrest and death in people. Death was caused by asphyxiation probably due to acute laryngeal edema and bronchoconstriction from inhalation of the capsicum oleoresin spray (40546,40672,40837,40879).
In a case report, a 47-year-old female who was exposed to capsaicin gas for more than 20 minutes experienced acute cough, shortness of breath, short-term chest pain, wheezing, and difficulty breathing for months afterwards (92980). In rare cases, exposure to capsicum oleoresin spray resulted in apnea, pulmonary injury, cyanosis, and even respiratory arrest (40383,40546).
General
...Orally, Devil's claw seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Allergic skin reactions, diarrhea, dyspepsia.
Serious Adverse Effects (Rare):
Orally: Gastrointestinal bleeding.
Cardiovascular ...In one case report, a healthy patient with normal blood pressure presented with hypertension after taking devil's claw 250 mg twice daily for 2 weeks. It gradually resolved after discontinuation of devil's claw (92017). Some animal research shows that devil's claw might have negative chronotropic, as well as positive and negative inotropic, effects (8609). However, these effects have not been documented in humans.
Dermatologic ...Rarely, allergic skin reactions have been reported in patients taking devil's claw (8608,14418).
Endocrine ...In one case report, a 65-year-old female developed psychomotor agitation, nausea, and distress from euvolemic hyponatremia secondary to inappropriate secretion of antidiuretic hormone (SIADH) within 1 month of starting daily treatment with devil's claw. Within 5 days of discontinuing the product and receiving sodium replacement, the symptoms resolved. Two months later, the patient re-initiated devil's claw and again developed euvolemic hyponatremia (96747).
Gastrointestinal ...Gastrointestinal side effects, including mild gastrointestinal upset, diarrhea, anorexia, acid reflux, or loss of taste, have been reported in some individuals receiving devil's claw, especially at high doses (6472,8608,8613,14332,14418,47112,47116,47144,47169). Gastrointestinal complaints have been reported in 9% to 18% of patients taking a specific devil's claw extract (Doloteffin, Ardeypharm) (8608,47169), while diarrhea was reported in about 8% of patients taking devil's claw (Harpadol, Arkopharma) (6472). Several cases of gastrointestinal bleeding have been reported (104977).
Genitourinary ...Dysmenorrhea was reported in one patient taking a specific devil's claw extract (Doloteffin, Ardeypharm) for 8 weeks (8608).
Neurologic/CNS ...In a trial of devil's claw, one patient withdrew after 4 days of therapy due to a throbbing frontal headache, as well as tinnitus, anorexia, and loss of taste (8613). Rarely, dizziness, somnolence, and insomnia have been reported (47116,47169). It is unclear if these symptoms were caused by devil's claw.
Psychiatric ...Rarely, anxiety has been reported in patients taking devil's claw (8608).
General ...European barberry is generally well tolerated when consumed in amounts commonly found in food. A thorough evaluation of safety outcomes has not been conducted for the use of larger, medicinal amounts. Topically, European barberry seems to be well tolerated.
Hepatic ...Orally, a case of hepatitis-associated aplastic anemia is reported in an adult male after consuming European barberry 15 drops and nannari root 15 drops twice a day for 2 weeks. The patient presented with lethargy, loss of appetite, and jaundice that progressed to high-grade fevers, chills, rigors, severe pancytopenia, and abnormal liver function tests. Liver biopsy was suggestive of drug-induced liver injury. The patient was hospitalized for multiple infections and symptomatic thrombocytopenia. Despite receiving supportive care, blood transfusions, and corticosteroids, the patient died 7 weeks after diagnosis (110021). The exact reason for this adverse effect is not clear.
General
...Orally, licorice is generally well tolerated when used in amounts commonly found in foods.
It seems to be well tolerated when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes or when used topically, short-term.
Most Common Adverse Effects:
Orally: Headache, nausea, and vomiting.
Topically: Contact dermatitis.
Intravenously: Diarrhea, itching, nausea, and rash.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about acute renal failure, cardiac arrest, cardiac arrhythmias, hypertension, hypokalemia, muscle weakness, paralysis, pseudohyperaldosteronism, and seizure associated with long-term use or large amounts of licorice containing glycyrrhizin.
Cardiovascular
...Orally, excessive licorice ingestion can lead to pseudohyperaldosteronism, which can precipitate cardiovascular complications such as hypertension and hypertensive crisis, ventricular fibrillation or tachycardia, sinus pause, and cardiac arrest.
These effects are due to the licorice constituent glycyrrhizin and usually occur when 20-30 grams or more of licorice product is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,97213) (104563,108574,108576,110305,112234). In one case report, an 89-year-old female taking an herbal medicine containing licorice experienced a fatal arrhythmia secondary to licorice-induced hypokalemia. The patient presented to the hospital with recurrent syncope, weakness, and fatigue for 5 days after taking an herbal medicine containing licorice for 2 months. Upon admission to the hospital, the patient developed seizures, QT prolongation, and ventricular arrhythmia requiring multiple defibrillations. Laboratory tests confirmed hypokalemia and pseudohyperaldosteronism (112234).
However, people with cardiovascular or kidney conditions may be more sensitive, so these adverse events may occur with doses as low as 5 grams of licorice product or glycyrrhizin 100 mg daily (15589,15593,15598,15600,59726). A case report in a 54-year-old male suggests that malnutrition might increase the risk of severe adverse effects with excessive licorice consumption. This patient presented to the emergency room with cardiac arrest and ventricular fibrillation after excessive daily consumption of licorice for about 3 weeks. This caused pseudohyperaldosteronism and then hypokalemia, leading to cardiovascular manifestations. In spite of resuscitative treatment, the patient progressed to kidney failure, refused dialysis, and died shortly thereafter (103791).
Dermatologic
...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912).
There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578). Burning sensation, itching, redness, and scaling were reported rarely in patients applying a combination of licorice, calendula, and snail secretion filtrate to the face. The specific role of licorice is unclear (110322).
In rare cases, the glycyrrhizin constituent of licorice has caused rash and itching when administered intravenously (59712).
Endocrine
...Orally, excessive licorice ingestion can cause a syndrome of apparent mineralocorticoid excess, or pseudohyperaldosteronism, with sodium and water retention, increased urinary potassium loss, hypokalemia, and metabolic alkalosis due to its glycyrrhizin content (781,10619,15591,15592,15593,15594,15595,15596,15597,15598)(15600,16057,16835,25659,25660,25673,25719,26439,59818,59822)(59832,59864,91722,104563,108568,108574,110305,112234).
These metabolic abnormalities can lead to hypertension, edema, EKG changes, fatigue, syncope, arrhythmias, cardiac arrest, headache, lethargy, muscle weakness, dropped head syndrome (DHS), rhabdomyolysis, myoglobinuria, paralysis, encephalopathy, respiratory impairment, hyperparathyroidism, and acute kidney failure (10393,10619,15589,15590,15593,15594,15596,15597,15599)(15600,16057,16835,25660,25673,25719,26439,31562,59709,59716)(59720,59740,59787,59820,59826,59882,59889,59900,91722,97214,100522) (104563,108576,108577). These effects are most likely to occur when 20-30 grams of licorice products containing glycyrrhizin 400 mg or more is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,108574). However, some people may be more sensitive, especially those with hypertension, diabetes, heart problems, or kidney problems (15589,15593,15598,15600,59726,108576,108577) and even low or moderate consumption of licorice may cause hypertensive crisis or hypertension in normotensive individuals (1372,97213). The use of certain medications with licorice may also increase the risk of these adverse effects (108568,108577). One case report determined that the use of large doses of licorice in an elderly female stabilized on fludrocortisone precipitated hypokalemia and hypertension, requiring inpatient treatment (108568). Another case report describes severe hypokalemia necessitating intensive care treatment due to co-ingestion of an oral glycyrrhizin-specific product and hydrochlorothiazide for 1 month (108577). Glycyrrhetinic acid has a long half-life, a large volume of distribution, and extensive enterohepatic recirculation. Therefore, it may take 1-2 weeks before hypokalemia resolves (781,15595,15596,15597,15600). Normalization of the renin-aldosterone axis and blood pressure can take up to several months (781,15595,108568). Treatment typically includes the discontinuation of licorice, oral and intravenous potassium supplementation, and short-term use of aldosterone antagonists, such as spironolactone (108574,108577).
Chewing tobacco flavored with licorice has also been associated with toxicity. Chewing licorice-flavored tobacco, drinking licorice tea, or ingesting large amounts of black licorice flavored jelly beans or lozenges has been associated with hypertension and suppressed renin and aldosterone levels (12671,12837,97214,97215,97217,108574). One case report suggests that taking a combination product containing about 100 mg of licorice and other ingredients (Jintan, Morishita Jintan Co.) for many decades may be associated with hypoaldosteronism, even up to 5 months after discontinuation of the product (100522). In another case report, licorice ingestion led to hyperprolactinemia in a female (59901). Licorice-associated hypercalcemia has also been noted in a case report (59766).
Gastrointestinal ...Nausea and vomiting have been reported rarely following oral use of deglycyrrhizinated licorice (25694,59871). Intravenously, the glycyrrhizin constituent of licorice has rarely caused gastric discomfort, diarrhea, or nausea (59712,59915).
Immunologic ...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912). There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578).
Musculoskeletal ...In a case report, excessive glycyrrhizin-containing licorice consumption led to water retention and was thought to trigger neuropathy and carpal tunnel syndrome (59791).
Neurologic/CNS ...Orally, licorice containing larger amounts of glycyrrhizin may cause headaches. A healthy woman taking glycyrrhizin 380 mg daily for 2 weeks experienced a headache (59892). Intravenously, the glycyrrhizin constituent of licorice has rarely caused headaches or fatigue (59721). In a case report, licorice candy ingestion was associated with posterior reversible encephalopathy syndrome accompanied by a tonic-clonic seizure (97218).
Ocular/Otic ...Orally, consuming glycyrrhizin-containing licorice 114-909 grams has been associated with transient visual loss (59714).
Pulmonary/Respiratory ...Orally, large amounts of licorice might lead to pulmonary edema. In one case report, a 64-year old male consumed 1020 grams of black licorice (Hershey Twizzlers) containing glycyrrhizin 3.6 grams over 3 days, which resulted in pulmonary edema secondary to pseudohyperaldosteronism (31561). Intravenously, the glycyrrhizin constituent of licorice has caused cold or flu-like symptoms, although these events are not common (59712,59721).
General
...Orally, St.
John's wort is generally well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, dizziness, dry mouth, gastrointestinal discomfort (mild), fatigue, headache, insomnia, restlessness, and sedation.
Topically: Skin rash and photodermatitis.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of suicidal ideation and psychosis after taking St. John's wort.
Cardiovascular
...In clinical research, palpitations have been reported for patients taking St.
John's wort orally, although the number of these events was higher for the patients taking sertraline (76070). In one case report, an adult female developed recurrent palpitations and supraventricular tachycardia (SVT) within 3 weeks of initiating St. John's wort 300 mg daily. SVT and related symptoms responded to Valsalva maneuvers and did not recur after discontinuing therapy (106051).
Edema has also been reported in clinical research for some patients treated with St. John's wort 900-1500 mg daily for 8 weeks (10843). Cardiovascular collapse following induction of anesthesia has been reported in an otherwise healthy patient who had been taking St. John's wort for 6 months (8931). A case of St. John's wort-induced hypertension has been reported for a 56-year-old patient who used St. John's wort extract 250 mg twice daily for 5 weeks. Blood pressure normalized after discontinuation of treatment (76073). A case of new-onset orthostatic hypotension and light-headedness has been reported for a 70 year-old homebound patient who was taking multiple prescription medications and herbal products, including St. John's wort (76128). When all herbal products were discontinued, these symptoms improved, and the patient experienced improvement in pain control.
Dermatologic
...Both topical and chronic oral use of St.
John's wort can cause photodermatitis (206,620,758,4628,4631,6477,13156,17986,76072,76148)(95506,110318). The average threshold dose range for an increased risk of photosensitivity appears to be 1.8-4 grams St. John's wort extract or 5-10 mg hypericin, daily. Lower doses might not cause this effect (4542,7808). For example, a single dose of St. John's wort extract 1800 mg (5.4 mg hypericin) followed by 900 mg (2.7 mg hypericin) daily does not seem to produce skin hypericin concentrations thought to be high enough to cause phototoxicity (3900,4542,76266). Females appear to have a higher risk of dose-related photosensitivity. In a dose-ranging, small clinical trial, almost all of the female participants experienced mild to moderate photosensitivity with paresthesia in sun-exposed skin areas after administration of St. John's wort (Jarsin, Casella Med) 1800 mg daily for 3-6 days. Symptoms resolved about 12-16 days after discontinuation (95506). Male participants reported no adverse effects at this dose, and both genders reported no adverse effects at lower doses. Light or fair-skinned people should employ protective measures against direct sunlight when using St. John's wort either topically or orally (628).
Total body erythroderma without exposure to sunlight, accompanied by burning sensation of the skin, has also been reported (8930). Orally, St. John's wort may cause pruritus or skin rash, although these events seem to occur infrequently (76140,76148,76245). A case of persistent scalp and eyebrow hair loss has been reported for a 24-year-old schizophrenic female who was taking olanzapine plus St. John's wort 900 mg/day orally (7811). Also, a case of surgical site irritation has been reported for a patient who applied ointment containing St. John's wort (17225).
Endocrine ...A case of syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in a 67-year-old male with depression has been reported. During a 3-month period, the patient was taking St. John's wort 300 mg daily then increased to 600-900 mg daily with no adverse effects despite a low serum sodium level of 122mEq/L, elevated levels of urine sodium, and urine osmolality suggestive of SIADH. St. John's wort appeared to be the only contributing factor. The patient's sodium level normalized 3 weeks after discontinuation of St. John's wort (95508).
Gastrointestinal ...Orally, St. John's wort may cause dyspepsia, anorexia, diarrhea, nausea, vomiting, and constipation, although these events seems to occur infrequently (4897,13021,17986,76070,76071,76113,76146,76150,76271).
Genitourinary
...Orally, St.
John's wort can cause intermenstrual or abnormal menstrual bleeding (1292,76056). However, this effect has occurred in patients who were also taking an oral contraceptive. Changes in menstrual bleeding might be the result of a drug interaction (1292,76056). Also, St. John's wort has been associated with anorgasmia and frequent urination when used orally (10843,76070).
Sexual dysfunction can occur with St. John's wort, but less frequently than with SSRIs (10843). A case of erectile dysfunction and orgasmic delay has been reported for a 49-year-old male after taking St. John's wort orally for one week. Co-administration of sildenafil 25-50 mg prior to sexual activity reversed the sexual dysfunction. Previously, the patient had experienced orgasmic delay, erectile dysfunction, and inhibited sexual desire when taking a selective serotonin reuptake inhibitor (sertraline) (4836).
Hepatic ...A case of acute hepatitis with prolonged cholestasis and features of vanishing bile duct syndrome has been reported for a patient who used tibolone and St. John's wort orally for 10 weeks (76135). A case of jaundice with transaminitis and hyperbilirubinemia has been reported for a 79 year-old female who used St. John's wort and copaiba (95505). Laboratory values normalized 7 weeks after discontinuation of both products.
Musculoskeletal ...Orally, St. John's wort may cause muscle or joint stiffness, tremor, muscle spasms, or pain, although these events appear to occur rarely (76070).
Neurologic/CNS ...St. John's wort may cause headache, dizziness, fatigue, lethargy, or insomnia (5096,13021,76070,76071,76113,76132,76133,76150,89666). Isolated cases of paresthesia have been reported for patients taking St. John's wort (5073). A case of subacute toxic neuropathy has been reported for a 35-year-old female who took St. John's wort 500 mg daily orally for 4 weeks (621).
Ocular/Otic ...There is concern that taking St. John's wort might increase the risk of cataracts. The hypericin constituent of St. John's wort is photoactive and, in the presence of light, may damage lens proteins, leading to cataracts (1296,17088). In population research, people with cataracts were significantly more likely to have used St. John's wort compared to people without cataracts (17088). Ear and labyrinth disorders have been possibly attributed to use of St. John's wort in clinical research, although these events rarely occur (76120).
Psychiatric
...St.
John's wort can induce hypomania in depressed patients and mania in depressed patients with occult bipolar disorder (325,3524,3555,3568,10845,76047,76064,76137,110318). Cases of first-episode psychosis have been reported for females who used St. John's wort orally. In both cases, symptoms resolved following discontinuation of St. John's wort and treatment with antipsychotics for several weeks (13015,89664). Also, psychosis and delirium have been reported for a 76-year-old female patient who used St. John's wort for 3 weeks. The patient may have been predisposed to this effect due to undiagnosed dementia (76270). Restlessness, insomnia, panic, and anxiety have been noted for some patients taking St. John's wort orally (5073,13156,76070,76132,76268,76269,89665).
In isolated cases, St. John's wort has been associated with a syndrome consisting of extreme anxiety, confusion, nausea, hypertension, and tachycardia. These symptoms may occur within 2-3 weeks after it is started, in patients with no other predisposing factors. This syndrome has been diagnosed as the serotonin syndrome (6201,7811,110318). In one case, the symptoms began after consuming tyramine-containing foods, including aged cheese and red wine (7812). In an isolated case, a 51-year-old female reported having had suicidal and homicidal thoughts for 9 months while taking vitamin C and a St. John's wort extract. Symptoms disappeared within 3 weeks of discontinuing treatment (76111). A case of decreased libido has been reported for a 42-year-old male with mood and anxiety disorders who had taken St. John's wort orally for 9 months (7312).
St. John's wort has been associated with withdrawal effects similar to those found with conventional antidepressants. Headache, nausea, anorexia, dry mouth, thirst, cold chills, weight loss, dizziness, insomnia, paresthesia, confusion, and fatigue have been reported. Withdrawal effects are most likely to occur within two days after discontinuation but can occur one week or more after stopping treatment in some people. Occurrence of withdrawal symptoms may not be related to dose or duration of use (3569,11801).
Pulmonary/Respiratory ...Orally, St. John's wort may cause sore throat, swollen glands, laryngitis, sinus ache, sweating, and hot flashes, although the frequency of these events appears to be similar to placebo (76150).
Renal ...Orally, St. John's wort has been associated with a case report of acute kidney failure in a 46-year-old female after one dose of homemade St. John's wort tea. Three sessions of hemodialysis were required before there was full recovery (106741). However, causality is unclear since the patient had also been taking diclofenac intermittently for a month prior to developing kidney failure.
Other ...Sjogren's syndrome has been reported in a patient taking herbal supplements including St. John's wort, echinacea, and kava. Echinacea may have been the primary cause, because Sjogren's syndrome is an autoimmune disorder. The role of St. John's wort in causing this syndrome is unclear (10319).
General
...Orally, verbena is well tolerated when used orally in amounts commonly found in foods (4912).
When used in medicinal amounts and in combination with other herbs, adverse effects have included gastrointestinal adverse effects and allergic skin reactions (374,379).
Topically, verbena can cause contact dermatitis (13431).
Gastrointestinal ...Orally, verbena in combination with other herbs can cause gastrointestinal adverse effects (374,379).
Immunologic ...Orally, verbena in combination with other herbs can cause allergic skin reactions (374,379). Topically, verbena can cause contact dermatitis (13431).