Each vegetable capsule contains: Tomato fruit extract (lycopersicon esculetum, 0.7-1% lycopene) 250 mg • Pomeforce brand Pomegranate fruit (punica granatum, 15-30% punicalagins) 200 mg • Antioxidant Support Proprietary Blend 23 mg: Sea Buckthorn blend pulp and seed supercritical extract, Rosehips pulp supercritical extract, Turmeric supercritical extract, Saffron powder, Rosemary supercritical extract, Marigold supercritical extract (calendula officinalis) • Turmeric rhizome hydroethanoic extract 8 mg. Other Ingredients: Modified Cellulose (capsule), Organic Maltodextrin, Sunflower Oil, Corn Starch, Soy Lecithin, Silicon Dioxide.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product LycoPom. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product LycoPom. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when the flower preparations are used orally or topically and appropriately (4,19779,36931,39503,93552,93557,96647,105088).
PREGNANCY: LIKELY UNSAFE
when used orally; contraindicated due to spermatocide, antiblastocyst, and abortifacient effects.
There is insufficient reliable information available about the safety of calendula when used topically during pregnancy (4).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when pomegranate fruit or fruit juice is used orally and appropriately. Pomegranate juice has been safely used in studies lasting up to 3 years (4912,8310,13022,13023,13690,14137,14388,17329,91693).
POSSIBLY SAFE ...when pomegranate extract is taken orally and appropriately. A specific pomegranate ellagitannin-enriched polyphenol extract (POMx, POM Wonderful) 1-3 grams daily has been safely used for up to 18 months (17729,69261,91686,91695,91697,99100,105269). ...when pomegranate seed oil is used orally and appropriately. Pomegranate seed oil 60 mg daily has been used with apparent safety for up to 12 weeks (91685). ...when a hot water extract of pomegranate seed powder is used orally and appropriately. Pomegranate seed powder 5 grams daily has been used with apparent safety for up to 8 weeks (105270). ...when pomegranate extract is used topically on oral mucosa (13689).
POSSIBLY UNSAFE ...when the pomegranate root, stem, and peel are used orally in large amounts. Bark of the pomegranate root and stem contains the piperidine alkaloids pelletierine, pseudopelletierine, isopelletierine, and methyl isopelletierine. These alkaloids have muscle relaxant properties that have been associated with paralysis and death in animals (13687,13694,13695). Dried pomegranate peel may contain aflatoxin, which is a potent hepatocarcinogen and toxin (92018).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when the fruit or fruit juice is consumed orally and appropriately (13686,105267).
There is insufficient reliable information available regarding the safety of using other forms of pomegranate or other parts of the plant during pregnancy or lactation; avoid using.
LIKELY SAFE ...when rose hip extract is used orally in the amounts found in foods. Rose hip extract has Generally Recognized as Safe (GRAS) status in the US (4912). ...when rose hip from Rosa canina is used orally and appropriately in medicinal amounts. A specific formulation of rose hip powder from Rosa canina (LitoZin/i-flex, Hyben Vital), taken in doses of up to 2.5 grams (5 capsules) twice daily, has been safely used for up to 6 months (17416,71641,71646,71658,71660,71661,104557). Rose hip powder from Rosa canina, 40 grams daily mixed in apple juice, has been used safely for up to 6 weeks (18104). Rose hip powder from Rosa canina, 500 mg twice daily for 20 days, has also been safely used (97938).
POSSIBLY SAFE ...when rose hip from Rosa damascena is used orally and appropriately in medicinal amounts. Rose hip extract from Rosa damascena has been used safely in doses of 200 mg every 6 hours for 3 days (104555). There is insufficient reliable information available about the safety of medicinal amounts of rose hip from other Rosa species. There is also insufficient reliable information available about the safety of rose hip when used topically.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of rose hip when used orally or topically in medicinal amounts; avoid using in amounts greater than those found in foods.
LIKELY SAFE ...when used orally in amounts typically found in foods. Rosemary has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the leaf is used orally and appropriately in medicinal amounts (18). Powdered rosemary leaf has been used with apparent safety as a single dose of up to 1.5 grams (18246,91731) or at a dose of 1-4 grams daily for up to 8 weeks (91727,98536,105327,109561). ...when the essential oil is used topically and appropriately for up to 7 months (5177,91729,109560). ...when the essential oil is used by inhalation as aromatherapy, short-term (7107,18323,105324,109559).
LIKELY UNSAFE ...when the essential oil or very large quantities of rosemary leaf are used orally. Ingestion of undiluted rosemary oil or very large quantities of rosemary leaf can cause serious adverse effects (18,515).
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Rosemary might have uterine and menstrual flow stimulant effects (4,12,18), and might increase metabolism of estradiol and estrone (18331); avoid using. There is insufficient reliable information available about the safety of rosemary when used topically during pregnancy.
LACTATION:
There is insufficient reliable information available about the safety of using rosemary in medicinal amounts during lactation; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Saffron has Generally Recognized as Safe (GRAS) status in the US for use as a spice or food coloring agent (4912).
POSSIBLY SAFE ...when used orally and appropriately in larger amounts, short-term. Saffron extracts have been used with apparent safety in clinical trials at doses of up to 100 mg daily for up to 26 weeks (11024,13103,16555,17214,17401,18102,93395,93397,93400,93403)(93407,97359,99436,100135,100138,100140,100658,100659). The saffron constituent crocin has been used with apparent safety at a dose of up to 30 mg daily for up to 3 months (93410,100139,105616).
POSSIBLY UNSAFE ...when used orally in high doses or for longer than 26 weeks. Taking 5 grams or more of saffron can cause severe side effects. Doses of 12-20 grams can be lethal (12,18). There is insufficient reliable information available about the safety of saffron when used topically.
PREGNANCY: LIKELY UNSAFE
when used orally in amounts exceeding those commonly found in foods.
Larger amounts of saffron have uterine stimulant and abortifacient effects (18); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when sea buckthorn fruit is consumed as food. Sea buckthorn fruit is used in jams, jellies, pies, juices, and sauces (9898).
POSSIBLY SAFE ...when sea buckthorn fruit or fruit extract is used orally and appropriately for medicinal purposes. The oil extract of the fruit and seed have been used with apparent safety in doses of up to 2 grams daily for up to 3 months (16692,17406). ...when sea buckthorn fruit is used topically and appropriately. A cream containing sea buckthorn fruit 40% daily has been used with apparent safety for up to 13 days (106091). There is insufficient reliable information available about the safety of sea buckthorn leaf or leaf extracts when used orally or topically.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately for medicinal purposes.
Sea buckthorn dry emulsion (prepared with the fruit juice and oil) 5-15 grams daily for 8 weeks has been used with apparent safety in children 1-7 years of age (94800).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when the ripe or unripe tomato fruit or its products are consumed in amounts found in foods (2406,9439,10418,106653,106654). ...when tomato leaf is consumed in regular food amounts (18).
POSSIBLY SAFE ...when a tomato extract is used orally for medicinal purposes. A specific tomato extract (Lyc-O-Mato, LycoRed Ltd) has been used with apparent safety in clinical studies lasting up to 8 weeks (7898,14287,102182).
POSSIBLY UNSAFE ...when the tomato leaf or unripe green tomato fruit is used orally in excessive amounts. Tomato leaf and unripe green tomatoes contain tomatine, which has been associated with toxicity when consumed in large quantities (18,102957). There is insufficient reliable information available about the safety of the tomato vine.
PREGNANCY AND LACTATION: LIKELY SAFE
when the tomato fruit or its products are consumed in typical food amounts.
There is insufficient reliable information available about the safety of tomato extracts when used during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Turmeric products providing up to 8 grams of curcumin have been safely used for up to 2 months (10453,11144,11150,17953,79085,89720,89721,89724,89728,101347)(81036,101349,107110,107116,107117,107118,107121,109278,109283). Turmeric in doses up to 3 grams daily has been used with apparent safety for up to 3 months (102350,104146,104148,113357). ...when used topically and appropriately (11148).
POSSIBLY SAFE ...when used as an enema, short-term. Turmeric extract in water has been used as a daily enema for up to 8 weeks (89729). ...when used topically as a mouthwash, short-term. A mouthwash containing 0.05% turmeric extract and 0.05% eugenol has been used safely twice daily for up to 21 days (89723).
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in food.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts; turmeric might stimulate the uterus and increase menstrual flow (12).
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food.
There is insufficient reliable information available about the safety of using turmeric in medicinal amounts during lactation.
Below is general information about the interactions of the known ingredients contained in the product LycoPom. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, calendula might have additive effects when used with CNS depressants, although this appears to be unlikely.
Details
|
Theoretically, taking pomegranate with ACEIs might increase the risk of adverse effects.
Details
Pomegranate juice is thought to have ACE inhibitor-like effects (8310).
|
Theoretically, taking pomegranate with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, taking pomegranate with carbamazepine might increase the risk of adverse effects, although research suggests this interaction is unlikely to be clinically significant.
Details
Animal research shows that pomegranate juice may inhibit cytochrome P450 3A4 (CYP3A4) metabolism of carbamazepine and increase levels of carbamazepine by 1.5 times without prolonging the elimination half-life. This suggests that pomegranate juice inhibits intestinal CYP3A4, but might not inhibit hepatic CYP3A4 (13188). However, some human research suggests that pomegranate does not significantly inhibit CYP3A4 drug metabolism in humans (16711,16712,17326).
|
Theoretically, pomegranate might increase levels of drugs metabolized by CYP2C9.
Details
|
Theoretically, pomegranate might increase levels of drugs metabolized by CYP2D6.
Details
In vitro, pomegranate juice inhibits CYP2D6 (13703). However, the clinical significance of this potential interaction in humans is not known.
|
Theoretically, pomegranate might increase levels of drugs metabolized by CYP3A4, but most research suggests this interaction is unlikely to be clinically significant.
Details
Pomegranate contains several polyphenols that have individually been shown to inhibit CYP3A4. However, there is contradictory evidence about the effect of whole pomegranate juice on CYP3A4 activity. In vitro, pomegranate juice significantly inhibits the CYP3A4 enzyme, with comparable inhibition to grapefruit juice (13188,16711,17326). In an animal model, pomegranate juice inhibits CYP3A4 metabolism of carbamazepine and increases levels of carbamazepine by 1.5 times (13188); however, in human volunteers, drinking a single glass of pomegranate juice 240 mL or taking 200 mL daily for 2 weeks does not significantly affect levels of the CYP3A4 substrate midazolam after oral or intravenous administration (16711,17730). Another study in healthy volunteers shows that consuming pomegranate juice 300 mL three times daily for three days also does not significantly affect levels of simvastatin, a CYP3A4 substrate (16712,91696) This suggests that pomegranate is unlikely to significantly affect levels of CYP3A4 substrates in humans (17326).
|
Theoretically, taking pomegranate with rosuvastatin might increase the risk of adverse effects.
Details
In one case, a patient taking rosuvastatin 5 mg every other day in combination with ezetimibe 10 mg daily developed rhabdomyolysis after drinking pomegranate juice 200 mL twice weekly for 3 weeks. This patient had a history of elevated creatine kinase levels while not receiving any statin treatment. This suggests a possible underlying myopathy and predisposition to rhabdomyolysis (14465).
|
Theoretically, pomegranate might increase levels of tolbutamide, although research suggests this interaction is unlikely to be clinically significant.
Details
Animal research shows that pomegranate juice inhibits the cytochrome P450 2C9 (CYP2C9) metabolism of tolbutamide. Pomegranate juice increased tolbutamide levels by 1.2 times without prolonging the elimination half-life. This suggests that pomegranate juice inhibits intestinal CYP2C9, but might not inhibit hepatic CYP2C9 (17327). Despite this evidence, clinical research shows that neither pomegranate juice nor pomegranate extract have a significant effect on CYP2C9 activity in humans (91694). This interaction does not appear to be clinically significant in humans.
|
Theoretically, pomegranate might increase warfarin levels and increase the risk of bleeding. Also, discontinuing regular consumption of pomegranate juice might decrease warfarin levels.
Details
In one case report, a patient had a stable, therapeutic bleeding time, as measured by international normalized ratio (INR), while taking warfarin in combination with pomegranate juice 2-3 times per week. The patient became subtherapeutic within about 10 days after discontinuing pomegranate juice, which required a warfarin dose increase (17328). In another case report, a patient with a stable INR for over one year presented with an INR of 14. The patient noted no changes to medications or diet but did report consuming around 3 liters of pomegranate juice over the previous week. The patient's INR stabilized upon moderation of pomegranate juice consumption (24273). The mechanism of this potential interaction is unclear.
|
Theoretically, the antioxidant effects of rose hip might reduce the effectiveness of alkylating agents but might also reduce the oxidative damage caused by certain alkylating agents.
Details
Rose hip contains vitamin C. The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). Further, some animal research suggests that the antioxidant effects of rose hip might attenuate cyclophosphamide-induced testicular toxicity (111413). More evidence is needed to determine what effect, if any, antioxidants found in rose hip, such as vitamin C, have on the effectiveness and adverse effects of chemotherapy.
|
Theoretically, rose hip might increase the amount of aluminum absorbed from aluminum compounds.
Details
Rose hip contains vitamin C. Theoretically, vitamin C increases the absorption of aluminum. Concomitant use might increase aluminum absorption, but the clinical significance of this is unknown (3046). Administer rose hip two hours before or four hours after antacids.
|
Theoretically, rose hip might reduce the effectiveness of anticoagulant or antiplatelet drugs.
Details
In vitro and animal research suggests that a constituent of rose hip, rugosin E, can induce platelet aggregation (71653). This has not been shown in humans. Theoretically, concomitant use of rose hip might reduce the effectiveness of antiplatelet or anticoagulant drugs.
|
Theoretically, the antioxidant effects of rose hip might reduce the effectiveness of antitumor antibiotics.
Details
Rose hip contains the antioxidant vitamin C. There is concern that antioxidants might reduce the activity of chemotherapy drugs that generate free radicals, such as antitumor antibiotics (391). In contrast, other researchers theorize that antioxidants might make antitumor antibiotic chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on antitumor antibiotic chemotherapy.
|
Theoretically, rose hip might reduce the clearance of aspirin; however, its vitamin C content is likely too low to produce clinically significant effects.
Details
Rose hip contains vitamin C. It has been suggested that acidification of the urine by vitamin C can decrease the urinary excretion of salicylates, increasing plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589). The vitamin C content of rose hip is typically about 500 mg per 100 grams. Thus, a clinically significant interaction between rose hip and aspirin is unlikely.
|
Theoretically, rose hip might increase blood levels of estrogens.
Details
Rose hip contains vitamin C. Increases in plasma estrogen levels of up to 55% have occured under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. However, increases in plasma estrogen levels may occur when women who are deficient in vitamin C take supplements (11161).
|
Theoretically, rose hip might increase blood levels of lithium.
Details
|
Theoretically, rose hip might reduce the effectiveness of warfarin; however, its vitamin C content is likely too low to produce clinically significant effects.
Details
Rose hip contains vitamin C. High doses of vitamin C may reduce the response to warfarin, possibly by causing diarrhea and reducing warfarin absorption (11566). This occurred in two people who took up to 16 grams daily of vitamin C, and resulted in decreased prothrombin time (9804,9806). Lower doses of 5-10 grams daily of vitamin C can also reduce warfarin absorption, but this does not seem to be clinically significant (9805,9806,11566,11567). The vitamin C content of rose hip is typically about 500 mg per 100 grams. Thus, a clinically significant interaction between rose hip and warfarin is unlikely.
|
Theoretically, rosemary may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, taking rosemary with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Animal research shows that rosemary extract can decrease blood glucose levels in diabetic models (71821,71923). However, research in humans is conflicting. Although rosemary powder decreased blood glucose levels in healthy adults (105327), no change in blood glucose levels was seen in adults with type 2 diabetes, most of whom were taking antidiabetes drugs (105323,105327).
|
Theoretically, rosemary might have additive effects with salicylate-containing drugs such as aspirin.
Details
Rosemary is reported to contain salicylates (18330).
|
Theoretically, rosemary might have additive effects with salicylate-containing drugs such as choline magnesium trisalicylate.
Details
Rosemary is reported to contain salicylate (18330).
|
Theoretically, rosemary might decrease the levels and clinical effects of CYP1A1 substrates.
Details
|
Theoretically, rosemary might decrease the levels and clinical effects of CYP1A2 substrates.
Details
|
Theoretically, rosemary might have additive effects with salicylate-containing drugs such as salsalate.
Details
Rosemary is reported to contain salicylate (18330).
|
Theoretically, concomitant use of saffron with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, concomitant use of saffron with antihypertensive drugs might have additive effects.
Details
|
Theoretically, saffron might inhibit the metabolism of caffeine.
Details
A small clinical study suggests that taking saffron powder 300 mg in 150 mL water daily for 5 days and then taking caffeine 200 mg seems to reduce caffeine metabolite levels in the saliva and urine in males, but not females. Theoretically, this may be due to the inhibition of cytochrome P450 1A2 by saffron (100130).
|
Theoretically, concomitant use of saffron and CNS depressants might have additive sedative effects.
Details
|
Theoretically, sea buckthorn may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, taking sea buckthorn with antihypertensive drugs might increase the risk of hypotension.
Details
Taking sea buckthorn appears to reduce blood pressure in some patients (74090).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research suggests that curcumin, a constituent of turmeric, inhibits mechlorethamine-induced apoptosis of breast cancer cells by up to 70%. Also, animal research shows that curcumin inhibits cyclophosphamide-induced tumor regression (96126). However, some in vitro research shows that curcumin does not affect the apoptosis capacity of etoposide. Also, other laboratory research suggests that curcumin might augment the cytotoxic effects of alkylating agents. Reasons for the discrepancies may relate to the dose of curcumin and the specific chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have on alkylating agents.
|
Taking turmeric with amlodipine may increase levels of amlodipine.
Details
Animal research shows that giving amlodipine 1 mg/kg as a single dose following the use of turmeric extract 200 mg/kg daily for 2 weeks increases the maximum concentration and area under the curve by 53% and 56%, respectively, when compared with amlodipine alone (107113). Additional animal research shows that taking amlodipine 1 mg/kg with a curcumin 2 mg/kg pretreatment for 10 days increases the maximum concentration and area under the curve by about 2-fold when compared with amlodipine alone (103099).
|
Turmeric may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Curcumin, a constituent of turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271). Furthermore, two case reports have found that taking turmeric along with warfarin or fluindione was associated with an increased international normalized ratio (INR) (89718,100906). However, one clinical study in healthy volunteers shows that taking curcumin 500 mg daily for 3 weeks, alone or with aspirin 100 mg, does not increase antiplatelet effects or bleeding risk (96137). It is possible that the dose of turmeric used in this study was too low to produce a notable effect.
|
Theoretically, taking turmeric with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Animal research and case reports suggest that curcumin, a turmeric constituent, can reduce blood glucose levels in patients with diabetes (79692,79984,80155,80313,80315,80476,80553,81048,81219). Furthermore, clinical research in adults with type 2 diabetes shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg decreased postprandial glucose levels for up to 24 hours when compared with glyburide alone, despite the lack of a significant pharmacokinetic interaction (96133). Another clinical study in patients with diabetes on hemodialysis shows that taking curcumin 80 mg daily for 12 weeks can reduce blood glucose levels when compared with placebo (104149).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro and animal research shows that curcumin, a constituent of turmeric, inhibits doxorubicin-induced apoptosis of breast cancer cells by up to 65% (96126). However, curcumin does not seem to affect the apoptosis capacity of daunorubicin. In fact, some research shows that curcumin might augment the cytotoxic effects of antitumor antibiotics, increasing their effectiveness. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effects, if any, antioxidants such as turmeric have on antitumor antibiotics.
|
Theoretically, turmeric might increase or decrease levels of drugs metabolized by CYP1A1. However, research is conflicting.
Details
|
Theoretically, turmeric might increase levels of drugs metabolized by CYP1A2. However, research is conflicting.
Details
|
Turmeric might increase levels of drugs metabolized by CYP3A4.
Details
In vitro and animal research show that turmeric and its constituents curcumin and curcuminoids inhibit CYP3A4 (21497,21498,21499). Also, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking turmeric and cancer medications that are CYP3A4 substrates, including everolimus, ruxolitinib, ibrutinib, and palbociclib, and bortezomib (111644). In another case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels after consuming turmeric powder at a dose of 15 or more spoonfuls daily for ten days prior. It was thought that turmeric increased levels of tacrolimus due to CYP3A4 inhibition (93544).
|
Theoretically, turmeric might increase blood levels of oral docetaxel.
Details
Animal research suggests that the turmeric constituent, curcumin, enhances the oral bioavailability of docetaxel (80999). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Theoretically, large amounts of turmeric might interfere with hormone replacement therapy through competition for estrogen receptors.
Details
In vitro research shows that curcumin, a constituent of turmeric, displaces the binding of estrogen to its receptors (21486).
|
Theoretically, taking turmeric and glyburide in combination might increase the risk of hypoglycemia.
Details
Clinical research shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg increases blood levels of glyburide by 12% at 2 hours after the dose in patients with type 2 diabetes. While maximal blood concentrations of glyburide were not affected, turmeric modestly decreased postprandial glucose levels for up to 24 hours when compared to glyburide alone, possibly due to the hypoglycemic effect of turmeric demonstrated in animal research (96133).
|
Theoretically, turmeric might increase the risk of liver damage when taken with hepatotoxic drugs.
Details
|
Theoretically, turmeric might increase the effects of losartan.
Details
Research in hypertensive rats shows that taking turmeric can increase the hypotensive effects of losartan (110897).
|
Theoretically, turmeric might have additive effects when used with hepatotoxic drugs such as methotrexate.
Details
In one case report, a 39-year-old female taking methotrexate, turmeric, and linseed oil developed hepatotoxicity (111644).
|
Theoretically, turmeric might increase the effects and adverse effects of norfloxacin.
Details
Animal research shows that taking curcumin, a turmeric constituent, can increase blood levels of orally administered norfloxacin (80863).
|
Theoretically, turmeric might increase blood levels of OATP4C1 substrates.
Details
In vitro research shows that the turmeric constituent curcumin competitively inhibits OATP4C1 transport. This transporter is expressed in the kidney and facilitates the renal excretion of certain drugs (113337). Theoretically, taking turmeric might decrease renal excretion of OATP substrates.
|
Theoretically, turmeric might increase the absorption of P-glycoprotein substrates.
Details
|
Theoretically, turmeric might alter blood levels of paclitaxel, although any effect may not be clinically relevant.
Details
Clinical research in adults with breast cancer receiving intravenous paclitaxel suggests that taking turmeric may modestly alter paclitaxel pharmacokinetics. Patients received paclitaxel on day 1, followed by either no treatment or turmeric 2 grams daily from days 2-22. Pharmacokinetic modeling suggests that turmeric reduces the maximum concentration and area under the curve of paclitaxel by 12.1% and 7.7%, respectively. However, these changes are not likely to be considered clinically relevant (108876). Conversely, animal research suggests that curcumin, a constituent of turmeric, enhances the oral bioavailability of paclitaxel (22005). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Turmeric might increase the effects and adverse effects of sulfasalazine.
Details
Clinical research shows that taking the turmeric constituent, curcumin, can increase blood levels of sulfasalazine by 3.2-fold (81131).
|
Turmeric might increase the effects and adverse effects of tacrolimus.
Details
In one case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels of 29 ng/mL. The patient previously had tacrolimus levels within the therapeutic range at 9.7 ng/mL. Ten days prior to presenting at the emergency room the patient started consumption of turmeric powder at a dose of 15 or more spoonfuls daily. It was thought that turmeric increased levels of tacrolimus due to cytochrome P450 3A4 (CYP3A4) inhibition (93544). In vitro and animal research show that turmeric and its constituent curcumin inhibit CYP3A4 (21497,21498,21499).
|
Turmeric may reduce the absorption of talinolol in some situations.
Details
Clinical research shows that taking curcumin for 6 days decreases the bioavailability of talinolol when taken together on the seventh day (80079). The clinical significance of this effect is unclear.
|
Theoretically, turmeric might reduce the levels and clinical effects of tamoxifen.
Details
In a small clinical trial in patients with breast cancer taking tamoxifen 20-30 mg daily, adding curcumin 1200 mg plus piperine 10 mg three times daily reduces the 24-hour area under the curve of tamoxifen and the active metabolite endoxifen by 12.8% and 12.4%, respectively, as well as the maximum concentrations of tamoxifen, when compared with tamoxifen alone. However, in the absence of piperine, the area under the curve for endoxifen and the maximum concentration of tamoxifen were not significantly reduced. Effects were most pronounced in patients who were extensive cytochrome P450 (CYP) 2D6 metabolizers (107123).
|
Turmeric has antioxidant effects. There is some concern that this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research shows that curcumin, a constituent of turmeric, inhibits camptothecin-induced apoptosis of breast cancer cells by up to 71% (96126). However, other in vitro research shows that curcumin augments the cytotoxic effects of camptothecin. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agents. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have.
|
Turmeric might increase the risk of bleeding with warfarin.
Details
One case of increased international normalized ratio (INR) has been reported for a patient taking warfarin who began taking turmeric. Prior to taking turmeric, the patient had stable INR measurements. Within a few weeks of starting turmeric supplementation, the patient's INR increased to 10 (100906). Additionally, curcumin, the active constituent in turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271), which may produce additive effects when taken with warfarin.
|
Below is general information about the adverse effects of the known ingredients contained in the product LycoPom. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and topically, calendula is generally well tolerated.
Serious Adverse Effects (Rare):
All ROAs: Allergic reactions.
Dermatologic ...Topically, a preparation containing calendula powder 0. 1% resulted in inflammation around the wound to which it was applied (96647). Burning sensation, itching, redness, and scaling were reported rarely in patients applying a combination of calendula, licorice, and snail secretion filtrate to the face. The specific role of calendula is unclear (110322).
Immunologic ...Orally, calendula can cause allergic reactions. Topically, calendula can cause eczematous allergic reactions. Calendula-specific patch testing is recommended prior to usage to determine allergenic potential. Testing is particularly necessary in individuals sensitive to the Asteraceae/Compositae family (10691,11458,96647). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs. A preparation containing calendula powder 0.1% resulted in hives in a patient with a ragweed allergy (96647). Despite the widespread use of calendula and the occurrence of allergies to other family members, there has been only one report of anaphylaxis (11152).
General
...Orally, pomegranate fruit juice is generally well tolerated.
Pomegranate fruit extract and seed oil seem to be well tolerated. Pomegranate root, stem, and peel should not be used orally in large amounts. Topically, pomegranate fruit extract seems to be well tolerated.
Most Common Adverse Effects:
Oral: Diarrhea, flatulence.
Cardiovascular ...In one clinical trial, 2% of patients experienced hyperlipidemia and hypertension after consumption of pomegranate juice (69175). However, most clinical research shows that pomegranate does not increase cholesterol or blood pressure and may actually improve these parameters in some patients (8310,13022,13023,69168,69373,69374).
Dermatologic ...Topically, pomegranate may cause urticaria (hives) in some patients (8445).
Gastrointestinal ...Orally, pomegranate may cause mild gastrointestinal adverse effects. In one clinical study, drinking pomegranate juice 8 ounces daily caused diarrhea and flatulence in 2% of patients (69175). In another clinical study, taking pomegranate extract (POMx, POM Wonderful LLC) 3000 mg daily caused diarrhea in 10% of patients. This dose of pomegranate extract also caused nausea, abdominal pain, constipation, gastrointestinal upset, and vomiting in a small number of patients (91695).
Immunologic
...Orally, pomegranate fruit or seeds may cause allergic reactions.
These allergic reactions occur more commonly in people who are allergic to other plants (7674). In rare cases, pomegranate fruit can cause angioedema. Angioedema seems to occur without warning and in people who have eaten pomegranate for many years. Patients should be told to stop eating pomegranate if swelling of the tongue or face develops (7673). In one report, a patient experienced pomegranate-dependent, exercise-induced anaphylaxis. The patient developed widespread urticaria (hives) and lip edema after eating pomegranate seeds and then exercising (17331). In another report, an atopic patient experienced an allergic reaction to pomegranate fruit. Symptoms included urticaria (hives), facial angioedema, and hypotension (91692).
Topically, pomegranate may cause contact hypersensitivity characterized by urticaria (hives), angioedema, rhinorrhea, red itchy eyes, and dyspnea arising within a few minutes of exposure (8445).
Pulmonary/Respiratory ...Orally, pomegranate juice may cause nasal congestion, but this event is rare. In one clinical study, pomegranate juice was associated with nasal congestion in 2% of patients (69175). There is also one case report of a 7-year-old asthmatic child who developed bronchospasm moments after ingesting several pomegranate seeds (69149).
General
...Orally, rose hip from Rosa canina is well tolerated.
Rose hip from Rosa damascena also seems to be well tolerated. A thorough evaluation of safety outcomes has not been conducted for rose hip derived from other species.
Most Common Adverse Effects:
Orally: Flatulence, loose stools.
Dermatologic ...Orally, one case of mild urticaria has been reported in a clinical trial for a patient taking a specific rose hip powder product (LitoZin/i-flex, Hyben Vital) 2. 5 grams twice daily (71646).
Gastrointestinal
...Orally, gastrointestinal reactions have been reported.
These include abdominal cramps, acid reflux, constipation, diarrhea, flatulence, nausea, vomiting, gastrointestinal obstruction, esophagitis, heartburn, acid reflux, and water brash. However, in most cases, these adverse effects occurred at the same frequency in patients taking placebo (15,18104,71641,71646,97938).
Rose hip powder is a source of vitamin C. Osmotic diarrhea and gastrointestinal upset have been reported with doses of vitamin C greater than the tolerable upper intake level (UL) of 2000 mg daily (4844). However, most rose hip products contain only 500 mg of vitamin C per 100 grams.
Genitourinary ...Orally, a few mild cases of frequent voiding have been reported in clinical trials. However, the frequency of occurrence does not seem to differ from those taking placebo (71641,71646).
Immunologic ...When inhaled in the workplace, rose hip dust has caused mild to moderate anaphylaxis (6).
Neurologic/CNS ...Orally, vertigo and headache have been reported rarely (97938).
Ocular/Otic ...A case of keratoconjunctivitis secondary to contact with rose hip has been reported. The adverse effect was attributed to irritant hairs found on the fruit of rose hip. Symptoms resolved after treatment with topical prednisolone 1% eye drops (71642).
General ...Orally, rosemary seems to be well tolerated when used in appropriate medicinal amounts. Undiluted rosemary oil or very large quantities of rosemary leaf should not be consumed. Topically and as aromatherapy, rosemary seems to be well tolerated.
Dermatologic ...Topically, rosemary use can lead to photosensitivity, erythema, dermatitis, and cheilitis in hypersensitive individuals (4,6).
Immunologic
...Topically, allergic reactions can occur.
When used in the mouth, lip and gum edema have occurred (101173). When used on the skin, allergic contact dermatitis has occurred, likely due to the constituent carnosol (71715,71924,71926).
Rosemary might also cause occupational asthma. A case of occupational asthma caused by several aromatic herbs including thyme, rosemary, bay leaf, and garlic has been reported. The diagnosis was confirmed by inhalation challenges. Although all of the herbs caused immediate skin reactivity, a radioallergosorbent test (RAST) showed that garlic was the most potent allergen by weight, with rosemary and the other herbs showing less reactivity (783).
Neurologic/CNS ...Orally, the undiluted oil, as well as the camphor constituent of rosemary, might cause seizures (4,5,6,12868).
General
...Orally, saffron extract seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal complaints, nausea, sedation, vomiting.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis.
Dermatologic ...Orally, sweating and flushing have been reported in clinical research for patients taking saffron 30-60 mg daily (93402,93409). Saffron poisoning can occur with oral intake of doses of 5 grams or more and symptoms include yellow appearance of the skin (2,11).
Gastrointestinal ...Orally, saffron has been associated with changes in appetite, nausea, and vomiting when given at doses of 30 mg twice daily for 26 weeks, or when the saffron constituent crocin was given as 15 mg twice daily for 12 weeks (18102,105616). At lower doses of 30 mg daily, the occurrence rate of these and other adverse events such as dry mouth, dyspepsia, diarrhea, and constipation was rare or similar to placebo (13103,93395,93402,93409). Saffron poisoning can occur with oral intake of doses of 5 grams or more and symptoms include yellow appearance of the mucous membranes (mimicking icterus), vomiting, and bloody diarrhea (2,11).
Genitourinary
...One report of excessive uterine bleeding occurred in a clinical trial.
The patient was taking the saffron constituent crocin 15 mg twice daily. It is unclear whether this event was related to treatment with the saffron constituent (93410).
Saffron poisoning can occur with oral intake of doses of 5 grams or more; symptoms include bleeding from the uterus (2,11).
Hematologic
...Orally, saffron extract has been reported to cause decreases in platelet, white blood cell, and red blood cell counts after 7 days to 12 weeks of use with doses of 60-200 mg daily.
Many of these decreases were only significant when compared to baseline but did not maintain significance when compared to placebo. These reductions were not considered clinically significant (18102,72473,93403,93409).
Saffron poisoning can occur with oral intake of doses of 5 grams or more; symptoms include bloody diarrhea, hematuria, bleeding from the nose, lips, eyelids or uterus, and thrombocytopenic purpura (2,11).
Immunologic ...Allergy to oral saffron has been reported in clinical trials (93404). Anaphylactic reactions can occur within minutes of eating food prepared with saffron (4107,72555). Occupational exposure to saffron has been associated with the development of rhinoconjunctivitis and allergy-induced asthma (4106).
Neurologic/CNS ...Orally, saffron has been reported to cause drowsiness, headache, agitation, and sedation when given at doses of 30 mg twice daily for up to 26 weeks or when crocin is given as 15 mg twice daily for 12 weeks (18102,105616). At doses of 30 mg daily for 6 weeks, the side effect occurrence rate was similar to placebo (13103). Saffron poisoning can occur with oral intake of doses of 5 grams or more; symptoms include vertigo and numbness (2,11).
Ocular/Otic ...Orally, saffron poisoning with oral intake of doses of 5 grams or more can cause ocular symptoms such as yellow appearance of the sclera (2,11).
Psychiatric ...Orally, saffron has been reported to cause anxiety and hypomania when given at doses of 30 mg twice daily for 26 weeks (18102). At doses of 30 mg daily for 6 weeks, the occurrence rate was similar to placebo (13103,93395). One report of agitation occurred in a clinical trial. The patient was taking the saffron constituent crocin 15 mg twice daily. It is unclear whether this event was related to treatment with the saffron constituent (93410).
Renal ...Orally, the saffron constituent crocin given as 15 mg twice daily for 12 week was associated with one case of urinary incontinence (105616). Saffron poisoning can occur with oral intake of doses of 5 grams or more; symptoms include hematuria and uremic collapse (2,11).
General
...Orally, sea buckthorn is well tolerated.
Topically, sea buckthorn fruit seems to be well tolerated.
Most Common Adverse Effects:
Topically: Irritation and rash.
Dermatologic ...Orally, high doses of sea buckthorn may cause yellow staining of the skin. One case of generalized yellow skin has been reported for a patient who consumed sea buckthorn 100 grams daily for 6 months (74072). Topically, sea buckthorn oil has been associated with dryness, irritation, redness, and rash (74077,102845). Rash occurred in 4% of patients in one clinical study (74077). When used intravaginally, severe burning and itching have been reported rarely (106089).
General
...Orally, tomato leaves and ripe or unripe tomato fruit are well tolerated in typical food amounts.
Tomato extracts also seem to be well tolerated. Tomatine, a glycoalkaloid found in tomato leaves and unripe green tomatoes, can cause serious side effects when consumed in excessive amounts.
Serious Adverse Effects (Rare):
Orally: Bradycardia, diarrhea, respiratory disturbances, spasms, vomiting, and death with excessive consumption of tomatine, a glycoalkaloid found in tomato leaves and unripe green tomatoes.
Cardiovascular ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause bradycardia when consumed in excessive amounts (18,102957).
Gastrointestinal ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause severe mucous membrane irritation, vomiting, diarrhea, and colic when consumed in excessive amounts (18,102957).
Immunologic ...In a case report, a 31-year-old female working in the supermarket developed an airborne allergy to tomato stem proteins with symptoms of severe rhinoconjunctivitis. This woman did not have a food allergy to tomato fruit (102467).
Neurologic/CNS ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause dizziness, stupor, headache, and mild spasms when consumed in excessive amounts (18,102957).
Pulmonary/Respiratory ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause respiratory disturbances when consumed in excessive amounts. In severe cases, death by respiratory failure might occur (18,102957).
General
...Orally and topically, turmeric is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, dyspepsia, diarrhea, distension, gastroesophageal reflux, nausea, and vomiting.
Topically: Curcumin, a constituent of turmeric, can cause contact urticaria and pruritus.
Cardiovascular ...Orally, a higher dose of turmeric in combination with other ingredients has been linked to atrioventricular heart block in one case report. It is unclear if turmeric caused this adverse event or if other ingredients or a contaminant were the cause. The patient had taken a combination supplement containing turmeric 1500-2250 mg, black soybean 600-900 mg, mulberry leaves, garlic, and arrowroot each about 300-450 mg, twice daily for one month before experiencing atrioventricular heart block. Heart rhythm normalized three days after discontinuation of the product. Re-administration of the product resulted in the same adverse effect (17720).
Dermatologic ...Following occupational and/or topical exposure, turmeric or its constituents curcumin, tetrahydrocurcumin, or turmeric oil, can cause allergic contact dermatitis (11146,79270,79470,79934,81410,81195). Topically, curcumin can also cause rash or contact urticaria (79985,97432,112117). In one case, a 60-year-old female, with no prior reactivity to regular oral consumption of turmeric products, developed urticaria after topical application of turmeric massage oil (97432). A case of pruritus has been reported following topical application of curcumin ointment to the scalp for the treatment of melanoma (11148). Yellow discoloration of the skin has been reported rarely in clinical research (113356). Orally, curcumin may cause pruritus, but this appears to be relatively uncommon (81163,97427,104148). Pitting edema may also occur following oral intake of turmeric extract, but the frequency of this adverse event is less common with turmeric than with ibuprofen (89720). A combination of curcumin plus fluoxetine may cause photosensitivity (89728).
Gastrointestinal ...Orally, turmeric can cause gastrointestinal adverse effects (107110,107112,112118), including constipation (81149,81163,96135,113355), flatulence and yellow, hard stools (81106,96135), nausea and vomiting (10453,17952,89720,89728,96127,96131,96135,97430,112117,112118), diarrhea or loose stool (10453,17952,18204,89720,96135,110223,112117,112118), dyspepsia (17952,89720,89721,96161,112118), gastritis (89728), distension and gastroesophageal reflux disease (18204,89720), abdominal fullness and pain (81036,89720,96161,97430), epigastric burning (81444), and tongue staining (89723).
Hepatic
...Orally, turmeric has been associated with liver damage, including non-infectious hepatitis, cholestasis, and hepatocellular liver injury.
There have been at least 70 reports of liver damage associated with taking turmeric supplements for at least 2 weeks and for up to 14 months. Most cases of liver damage resolved upon discontinuation of the turmeric supplement. Sometimes, turmeric was used concomitantly with other supplements and medications (99304,102346,103094,103631,103633,103634,107122,109288,110221). The Drug-Induced Liver Injury Network (DILIN) has identified 10 cases of liver injury which were considered to be either definitely, highly likely, or probably associated with turmeric; none of these cases were associated with the use of turmeric in combination with other potentially hepatotoxic supplements. Most patients (90%) presented with hepatocellular pattern of liver injury. The median age of these case reports was 56 years and 90% identified as White. In these case reports, the carrier frequency on HLAB*35:01 was 70%, which is higher than the carrier frequency found in the general population. Of the ten patients, 5 were hospitalized and 1 died from liver injury (109288).
It is not clear if concomitant use with other supplements or medications contributes to the risk for liver damage. Many case reports did not report turmeric formulation, dosing, or duration of use (99304,103094,103631,103634,109288). However, at least 10 cases involved high doses of curcumin (250-1812.5 mg daily) and the use of highly bioavailable formulations such as phytosomal curcumin and formulations containing piperine (102346,103633,107122,109288,110221).
Neurologic/CNS ...Orally, the turmeric constituent curcumin can cause vertigo, but this effect seems to be uncommon (81163).
Psychiatric ...Orally, the turmeric constituent curcumin or a combination of curcumin and fluoxetine can cause giddiness, although this event seems to be uncommon (81206,89728).
Renal ...Orally, turmeric has been linked to one report of kidney failure, although the role of turmeric in this case is unclear. A 69-year-old male developed kidney failure related to calcium oxalate deposits in the renal tubules following supplementation with turmeric 2 grams daily for 2 years as an anti-inflammatory for pelvic pain. While turmeric is a source of dietary oxalates, pre-existing health conditions and/or chronic use of antibiotics may have contributed to the course of disease (113343).
Other ...There is a single case report of death associated with intravenous use of turmeric. However, analysis of the treatment vial suggests that the vial contained only 0.023% of the amount of curcumin listed on the label. Also, the vial had been diluted in a solution of ungraded polyethylene glycol (PEG) 40 castor oil that was contaminated with 1.25% diethylene glycol. Therefore the cause of death is unknown but is unlikely to be related to the turmeric (96136).