Apis mellifica 18.0 LM • Belladonna Baccifera 800.0 C • Ignatia amara 16.0 LM • Magnesium Carbonica 21.0 D • Phosphorus 21.0 D • Pituitarium Posterium 21.0 D • Pulsatilla vulgaris 21.0 D. Other Ingredients: Ethanol.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
In 2004, Canada began regulating natural medicines as a category of products separate from foods or drugs. These products are officially recognized as "Natural Health Products." These products include vitamins, minerals, herbal preparations, homeopathic products, probiotics, fatty acids, amino acids, and other naturally derived supplements.
In order to be marketed in Canada, natural health products must be licensed. In order to be licensed in Canada, manufacturers must submit applications to Health Canada including information about uses, formulation, dosing, safety, and efficacy.
Products can be licensed based on several criteria. Some products are licensed based on historical or traditional uses. For example, if an herbal product has a history of traditional use, then that product may be acceptable for licensure. In this case, no reliable scientific evidence is required for approval.
For products with non-traditional uses, some level of scientific evidence may be required to support claimed uses. However, a high level of evidence is not necessarily required. Acceptable sources of evidence include at least one well-designed, randomized, controlled trial; well-designed, non-randomized trials; cohort and case control studies; or expert opinion reports.
Finished products licensed by Health Canada must be manufactured according to Good Manufacturing Practices (GMPs) as outlined by Health Canada.
This is a homeopathic preparation. Homeopathy is a system of medicine established in the 19th century by a German physician named Samuel Hahnemann. Its basic principles are that "like treats like" and "potentiation through dilution." For example, in homeopathy, diarrhea would be treated with an extreme dilution of a substance that normally causes diarrhea when taken in high doses.
Practitioners of homeopathy believe that more dilute preparations are more potent. Many homeopathic preparations are so diluted that they contain little or no active ingredient. Therefore, most homeopathic products are not expected to have any pharmacological effects, drug interactions, or other harmful effects. Any beneficial effects are controversial and cannot be explained by current scientific methods.
Dilutions of 1 to 10 are designated by an "X." So a 1X dilution = 1:10, 3X=1:1000; 6X=1:1,000,000. Dilutions of 1 to 100 are designated by a "C." So a 1C dilution = 1:100; 3C = 1:1,000,000. Dilutions of 24X or 12C or more contain zero molecules of the original active ingredient.
Homeopathic products are permitted for sale in the US due to legislation passed in 1938 sponsored by a homeopathic physician who was also a Senator. The law still requires that the FDA allow the sale of products listed in the Homeopathic Pharmacopeia of the United States. However, homeopathic preparations are not held to the same safety and effectiveness standards as conventional medicines. For more information, see the Homeopathy monograph.
Below is general information about the effectiveness of the known ingredients contained in the product Emvita 20. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of Ignatius bean.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of pulsatilla.
Below is general information about the safety of the known ingredients contained in the product Emvita 20. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Beeswax has Generally Recognized as Safe (GRAS) status in the US (4912). ...when used orally as a medicinal agent (11)....when used topically (11,55245,96328,96329).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of medicinal amounts of beeswax during pregnancy and lactation.
POSSIBLY UNSAFE ...when used rectally. It is not known whether significant amounts of the toxic alkaloids are absorbed from the rectum (106909). ...when used topically. It is not known whether significant amounts of the toxic alkaloids are absorbed through the skin (106909).
LIKELY UNSAFE ...when used orally. Belladonna contains toxic alkaloids and has been linked to reports of serious adverse effects (12,553,34144).
CHILDREN: LIKELY UNSAFE
when used orally.
Fatalities in children may occur at doses of belladonna providing atropine 0.2 mg/kg (34168). Two belladonna berries, which contain 2 mg atropine per fruit, may be lethal for a small child (34144). Severe adverse effects and fatalities have been reported in infants treated with topical homeopathic teething products containing belladonna (17493,34142,34146,93537).
PREGNANCY: LIKELY UNSAFE
when used orally.
Belladonna contains toxic alkaloids and has been linked to reports of serious adverse effects (12,553,34144).
LACTATION: LIKELY UNSAFE
when used orally.
Belladonna can reduce milk production and is secreted into breast milk (15).
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
LIKELY SAFE ...when used orally and appropriately short-term (15). ...when sodium phosphate is used rectally and appropriately, no more than once every 24 hours, short-term (104471). Long-term use or high doses used orally or rectally require monitoring of serum electrolytes (2494,2495,2496,2497,2498,3092,112922). ...when used intravenously. Potassium phosphate is an FDA-approved prescription drug (15).
POSSIBLY UNSAFE ...when phosphate (expressed as phosphorus) intake exceeds the tolerable upper intake level (UL) of 4 grams daily for adults under 70 years and 3 grams daily for adults older than 70. Hyperphosphatemia, resulting in electrolyte disturbances, alterations in calcium homeostasis, and calcification of nonskeletal tissues, may occur (7555). ...when used rectally more frequently than once every 24 hours, in excessive doses, with longer retention enema time, or in older patients with comorbidity or renal impairment (112922). The US Food and Drug Administration (FDA) warns that this may increase the risk of hyperphosphatemia, dehydration, and electrolyte imbalances leading to kidney and heart damage (104471).
CHILDREN: LIKELY SAFE
when used orally and appropriately at recommended dietary allowances (RDAs).
The daily RDAs are: children 1-3 years, 460 mg; children 4-8 years, 500 mg; males and females 9-18 years, 1250 mg (7555). ...when sodium phosphate is used rectally and appropriately, no more than once every 24 hours, short-term in children 2 years and older (104471). ...when used intravenously. Intravenous potassium phosphate is an FDA-approved prescription drug (15).
CHILDREN: POSSIBLY UNSAFE
when phosphate (expressed as phosphorus) intake exceeds the tolerable upper intake level (UL) of 3 grams daily for children 1-8 years of age and 4 grams daily for children 9 years and older.
Hyperphosphatemia, resulting in electrolyte disturbances, alterations in calcium homeostasis, and calcification of nonskeletal tissues, may occur (7555). ...when sodium phosphate is used rectally more frequently than once every 24 hours, or in children under 2 years of age or with Hirchsprung disease (112922). The US Food and Drug Administration (FDA) warns that these uses may increase the risk of hyperphosphatemia, dehydration, and electrolyte imbalances leading to kidney and heart damage (104471).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately at the recommended dietary allowance (RDA) of 1250 mg daily for individuals 14-18 years of age and 700 mg daily for those over 18 years of age (7555).
...when sodium phosphate is used rectally and appropriately short-term (15). ...when used intravenously. Intravenous potassium phosphate is an FDA-approved prescription drug (15).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when phosphate (expressed as phosphorus) intake exceeds the tolerable upper intake level (UL).
Hyperphosphatemia, resulting in electrolyte disturbances, alterations in calcium homeostasis, and calcification of nonskeletal tissues, may occur. The UL during pregnancy is 3.5 grams daily. During lactation, the UL is 4 grams daily (7555).
LIKELY UNSAFE ...when fresh above ground parts are used orally or topically; pulsatilla is a severe local irritant (4). There is insufficient reliable information available about the safety of the use of dried pulsatilla.
PREGNANCY: LIKELY UNSAFE
when used orally.
The fresh or dried above ground parts are contraindicated due to abortifacient and teratogenic effects (2,4). ...when the fresh above ground parts are used topically. There is insufficient reliable information available about the safety of topical dried pulsatilla during pregnancy.
LACTATION: LIKELY UNSAFE
when the fresh above ground parts are used for oral or topical use (19).
There is insufficient reliable information available about the safety of dried pulsatilla during breast-feeding.
Below is general information about the interactions of the known ingredients contained in the product Emvita 20. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Belladonna may increase the risk of adverse effects when used concomitantly with anticholinergic drugs.
Details
|
Theoretically, belladonna might reduce the effects of cisapride.
Details
Belladonna contains atropine. In vivo evidence suggests that atropine can prevent cisapride from increasing motility in the gastrointestinal tract (25191).
|
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Details
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
Details
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
Details
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Details
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Details
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
Details
|
Gabapentin absorption can be decreased by magnesium.
Details
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
Details
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Details
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Details
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Details
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
Details
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Details
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Details
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Details
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Theoretically, taking phosphate salts with bisphosphonates might increase the risk of hypocalcemia.
Details
Combining bisphosphonates and phosphate can cause hypocalcemia. In one report, hypocalcemic tetany developed in a patient taking alendronate (Fosamax) who received a large dose of phosphate salts as a pre-operative laxative (14589).
|
Taking erdafitinib with phosphate salts increases the risk of hyperphosphatemia.
Details
Erdafitinib increases phosphate levels. It is recommended that patients taking erdafitinib restrict phosphate intake to no more than 600-800 mg daily (104470).
|
Taking futibatinib with phosphate salts increases the risk of hyperphosphatemia.
Details
Futibatinib can cause hyperphosphatemia, as reported in 88% of patients in clinical studies. In addition, 77% of patients in clinical studies required use of a phosphate binder to manage hyperphosphatemia. Phosphate salts should generally be avoided by people taking this medication (112912).
|
Below is general information about the adverse effects of the known ingredients contained in the product Emvita 20. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, beeswax is well tolerated.
Allergic reactions to beeswax are possible in some patients (11).
Topically, beeswax may cause allergic contact dermatitis. In most cases, this reaction is likely caused by the propolis component of beeswax (55245,102517).
Dermatologic ...Topically, beeswax may cause allergic contact dermatitis. In most cases, this reaction is likely caused by the propolis component of beeswax (55245,102517). While this reaction is thought to be rare in the general population, one cross-sectional study found that 18% of patients with a history of cheilitis or facial dermatitis experienced positive reactions to beeswax. While most of these patients also had a positive reaction to a propolis patch test, some did not, suggesting that a substance in beeswax itself may be involved in this sensitization (102517).
Immunologic ...Orally, beeswax may cause allergic reactions (11). Topically, beeswax may cause allergic contact dermatitis. In most cases, this reaction is likely caused by the propolis component of beeswax (102517).
General
...Orally, belladonna can cause anticholinergic side effects even at low doses, and is considered poisonous.
Most Common Adverse Effects:
Orally: Anticholinergic side effects, including blurred vision, constipation, delirium, dilated pupils, dizziness, dry mouth, fever, headache, hypertension, muscle rigidity and tremor, psychosis, respiratory failure, and slurred speech.
Cardiovascular ...Orally, belladonna can cause anticholinergic side effects such as hypertension, hypotension, tachycardia, and ventricular premature beats (553,34168,34180).
Dermatologic
...Orally, belladonna can cause anticholinergic side effects such as dry, red skin and decreased perspiration (553,34146,34152).
One case of rash and another case of hives have been reported in patients taking belladonna with phenobarbital and ergotamine orally; it is unclear if the adverse effects were due to belladonna or the other ingredients (34154).
Topically, belladonna plaster (Cuxon Gerrard) can cause contact dermatitis (34152).
Gastrointestinal ...Orally, belladonna can cause anticholinergic side effects such as dry mouth and constipation (553,34162,34163,34176,34180,34181).
Genitourinary ...Orally, belladonna can cause anticholinergic side effects such as urinary retention (553,34145,34150,34163).
Neurologic/CNS ...Orally, belladonna can cause anticholinergic side effects such as memory and attention impairment, headache, and confusion (553,34163,34180).
Ocular/Otic ...Orally and topically, belladonna can cause anticholinergic side effects such as dilation of pupils and blurred vision (553,34157,34168,34169,34180). A case report describes anisocoria (unequal pupil sizes) in a 70-year-old female who used homeopathic pink eye relief drops (Similasan) containing belladonna, eyebright, and hepar sulphuris (calcium sulfide) in one eye for 3 days. The pupil dilation lasted more than 2 weeks and did not respond to bright light or pilocarpine (106907). Another report describes a case of acute angle closure glaucoma, requiring referral to an ophthalmologist, in a 55-year-old female who used these eye drops for 2 days (106906).
General
...Orally, Ignatius bean is generally regarded as unsafe for use.
Any benefits of therapy may not outweigh the risk of toxicity. Ignatius bean 30-50 mg, which contains approximately 5 mg of strychnine, can cause restlessness, anxiety, heightened sense perception, enhanced reflexes, equilibrium disorders, painful back and neck stiffness, twitching, spasms of jaw and neck muscles, myoglobinuric renal failure, rhabdomyolysis, extreme muscle tension, and agitation and difficulty breathing after respiratory spasms (55854). Seizures have been reported to occur within 15 minutes of Ignatius bean ingestion (17). Taking Ignatius bean at a dose of 1-2 grams can be fatal (18). Most deaths occur within 3-6 hours of ingestion and are due to respiratory and subsequent cardiac arrest, anoxic brain damage, or multiple organ failure secondary to hyperthermia (18,505).
Long-term consumption of Ignatius bean can cause strychnine accumulation, particularly in individuals with liver damage. Chronic use can cause death after a period of weeks (18).
By inhalation, Ignatius bean has been reported to cause seizures (17).
Cardiovascular ...Orally, Ignatius bean 1-2 grams has been reported to cause fatal cardiac arrest within 3-6 hours of ingestion (55853,55855).
Endocrine ...Orally, Ignatius bean 1-2 grams has been reported to cause hyperthermia resulting in multiple organ failure within 3-6 hours of ingestion (18,505).
Musculoskeletal ...Orally, Ignatius bean 30-50 mg, which contains approximately 5 mg of strychnine, has been reported to cause rhabdomyolysis, painful back and neck stiffness, spasms of jaw and neck muscles, and extreme muscle tension (55854).
Neurologic/CNS
...Orally, Ignatius bean 30-50 mg, which contains approximately 5 mg of strychnine, has been reported to cause restlessness, anxiety, heightened sense perception, enhanced reflexes, and twitching.
It has also been reported to cause seizures within 15 minutes of ingestion (55854). Taking 1-2 grams of Ignatius bean has been reported to cause death due to anoxic brain damage (18,505).
By inhalation, Ignatius bean has been reported to cause seizures within 5 minutes (17).
Pulmonary/Respiratory ...Orally, Ignatius bean 30-50 mg, which contains approximately 5 mg of strychnine, has been reported to cause respiratory acidosis and difficulty breathing due to respiratory spasms (55854).
Renal ...Orally, Ignatius bean has been associated with myoglobinuric renal failure (55854).
Other ...Orally, Ignatius bean 1-2 grams can be fatal. Most deaths occur 3-6 hours after exposure and occur from respiratory and cardiac arrest, anoxic brain damage, or multiple organ failure due to hyperthermia (55853). Chronic use of lower doses of Ignatius bean has been reported to cause death after a period of weeks (55853).
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466). Antenatal magnesium sulfate may also cause nausea and vomiting (60915). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General
...Orally, intravenously, and rectally, phosphate salts are generally well tolerated when used appropriately and/or as prescribed.
Most Common Adverse Effects:
Orally: Abdominal pain, anal irritation, bloating, diarrhea, headache, gastrointestinal irritation, hyperphosphatemia, hypocalcemia, malaise, nausea, sleep disturbance, and vomiting.
Rectally: Hyperphosphatemia and hypocalcemia.
Serious Adverse Effects (Rare):
Orally: Extraskeletal calcification.
Cardiovascular ...Orally, a case of allergic acute coronary syndrome e., Kounis syndrome) is reported in a 43-year-old female after ingesting a specific sodium phosphate laxative product (Travad oral). She presented with maculopapular rash that progressed to anaphylaxis and a non-ST elevation acute coronary syndrome. The patient recovered after hospitalization for 3 days with medical management (112894).
Gastrointestinal ...Orally, phosphate salts can cause gastrointestinal irritation, nausea, abdominal pain, bloating, anal irritation, and vomiting (15,2494,2495,2496,2497,93846,93848,93850,93851,93853,107008). Sodium and potassium phosphates can cause diarrhea (15). Aluminum phosphate can cause constipation (15). A large comparative study shows that, when taken orally as a bowel preparation for colonoscopy, sodium phosphate is associated with gastric mucosal lesions in about 4% of patients (93868).
Neurologic/CNS ...Orally, phosphate salts can commonly cause malaise (93846). Headaches and sleep disturbance may also occur (93848,93851).
Renal ...Orally, use of sodium phosphate for bowel cleansing has been associated with an increased risk of acute kidney injury in some patients (93863). However, a pooled analysis of clinical research suggests that results are not consistent for all patients (93864). Some evidence suggests that female gender, probably due to lower body weight, iron-deficiency anemia, dehydration, and chronic kidney disease are all associated with an increased risk of sodium phosphate-induced kidney dysfunction (93865).
Other
...Orally, phosphate salts can cause fluid and electrolyte disturbances including hyperphosphatemia and hypocalcemia, and extraskeletal calcification.
Potassium phosphates can cause hyperkalemia. Sodium phosphates can cause hypernatremia and hypokalemia (15,2494,2495,2496,2497,107008).
Rectally, phosphate salts can cause fluid and electrolyte disturbances including hyperphosphatemia and hypocalcemia (15,112922).
Deaths related to intake of oral or rectal phosphate salts are rare and most have occurred in infants and are related to overdose (93866). However, death has also been reported in elderly patients using sodium phosphate enemas, mainly at standard doses of 250 mL (93867).
General
...Orally, fresh pulsatilla is a toxic gastrointestinal irritant (4,19).
It can also cause kidney and urinary tract irritation (2).
Topically, contact with the fresh plant can cause skin irritation, mucous membrane irritation, itching, and pustule formation known as ranunculus dermatitis (2). Allergic reactions to pulsatilla volatile oil have been documented with patch tests (4).
Inhalation of pulsatilla volatile oil may cause nasal mucosal and conjunctival irritation (4).
Dermatologic ...Topically, contact with the fresh plant can cause skin irritation, mucous membrane irritation, itching, and pustule formation known as ranunculus dermatitis (2).
Gastrointestinal ...Orally, fresh pulsatilla is a toxic gastrointestinal irritant (4,19).
Genitourinary ...Orally, fresh pulsatilla can cause urinary tract irritation (2).
Immunologic ...Topically, allergic reactions to the protoanemonin-containing volatile oil of pulsatilla have been documented with patch tests (4).
Ocular/Otic ...Inhalation of the protoanemonin-containing volatile oil of pulsatilla may cause conjunctival irritation (4).
Pulmonary/Respiratory ...Inhalation of the protoanemonin-containing volatile oil of pulsatilla may cause nasal mucosal irritation (4).
Renal ...Orally, fresh pulsatilla can cause kidney irritation (2).