Arnica montana 30 CK • Badiaga 30 CK • Bellis perennis 30 CK • Cuprum Metallicum 9 CH • Ledum palustre 30 CK • Magnesia Muriatica 20 X • Magnesia Phosphorica 20 X. Other Ingredients: Distilled Water, Ethyl Alcohol 20%.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
In 2004, Canada began regulating natural medicines as a category of products separate from foods or drugs. These products are officially recognized as "Natural Health Products." These products include vitamins, minerals, herbal preparations, homeopathic products, probiotics, fatty acids, amino acids, and other naturally derived supplements.
In order to be marketed in Canada, natural health products must be licensed. In order to be licensed in Canada, manufacturers must submit applications to Health Canada including information about uses, formulation, dosing, safety, and efficacy.
Products can be licensed based on several criteria. Some products are licensed based on historical or traditional uses. For example, if an herbal product has a history of traditional use, then that product may be acceptable for licensure. In this case, no reliable scientific evidence is required for approval.
For products with non-traditional uses, some level of scientific evidence may be required to support claimed uses. However, a high level of evidence is not necessarily required. Acceptable sources of evidence include at least one well-designed, randomized, controlled trial; well-designed, non-randomized trials; cohort and case control studies; or expert opinion reports.
Finished products licensed by Health Canada must be manufactured according to Good Manufacturing Practices (GMPs) as outlined by Health Canada.
This is a homeopathic preparation. Homeopathy is a system of medicine established in the 19th century by a German physician named Samuel Hahnemann. Its basic principles are that "like treats like" and "potentiation through dilution." For example, in homeopathy, diarrhea would be treated with an extreme dilution of a substance that normally causes diarrhea when taken in high doses.
Practitioners of homeopathy believe that more dilute preparations are more potent. Many homeopathic preparations are so diluted that they contain little or no active ingredient. Therefore, most homeopathic products are not expected to have any pharmacological effects, drug interactions, or other harmful effects. Any beneficial effects are controversial and cannot be explained by current scientific methods.
Dilutions of 1 to 10 are designated by an "X." So a 1X dilution = 1:10, 3X=1:1000; 6X=1:1,000,000. Dilutions of 1 to 100 are designated by a "C." So a 1C dilution = 1:100; 3C = 1:1,000,000. Dilutions of 24X or 12C or more contain zero molecules of the original active ingredient.
Homeopathic products are permitted for sale in the US due to legislation passed in 1938 sponsored by a homeopathic physician who was also a Senator. The law still requires that the FDA allow the sale of products listed in the Homeopathic Pharmacopeia of the United States. However, homeopathic preparations are not held to the same safety and effectiveness standards as conventional medicines. For more information, see the Homeopathy monograph.
Below is general information about the effectiveness of the known ingredients contained in the product Musc Lax. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Musc Lax. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally in amounts commonly found in foods. Arnica has Generally Recognized As Safe (GRAS) status for use as a food flavoring in the US (4912). However, Canadian regulations do not allow its use as a food ingredient (12). ...when used orally in homeopathic dilutions of 30C and up to 5C (19110,19111,19117,19124,19126,96769). ...when used topically on unbroken skin, short-term (12).
LIKELY UNSAFE ...when used orally or when applied topically to broken skin. Arnica is considered poisonous and has caused severe or fatal poisonings (5). Arnica can cause gastroenteritis, muscle paralysis, bleeding, arrhythmia, hypertension, shortness of breath, nausea and vomiting, multi-organ failure, and death (4,5,17,104,19101,19102,19103,19104,19105,19106,19107,19108).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally or topically; avoid using (12).
LIKELY SAFE ...when used orally and appropriately. Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 10 mg daily (7135).
POSSIBLY SAFE ...when copper oxide is used topically. A wound dressing impregnated with copper oxide in concentrations of 3% by weight has been used with apparent safety in one clinical trial (105363).
POSSIBLY UNSAFE ...when used orally in doses exceeding the UL of 10 mg daily. Higher intake can cause liver damage (7135,45865). Kidney failure and death can occur with ingestion of as little as 1 gram of copper sulfate (17).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 1 mg daily for 1-3 years of age, 3 mg daily for 4-8 years of age, 5 mg daily for 9-13 years of age, and 8 mg daily for 14-18 years of age (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses exceeding the UL (7135).
Higher intake can cause liver damage (7135).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 8 mg daily for those 14-18 years of age or 10 mg daily for those 19 years and older (7135).
PREGNANCY: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher intake can cause liver damage (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 8 mg daily for those 14-18 years of age or 10 mg daily for those 19 years and older (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher intake can cause liver damage (7135).
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
LIKELY UNSAFE ...when large amounts are used orally to induce abortion (2). The essential oil of marsh Labrador tea can cause severe gastrointestinal tract irritation, kidney and urinary tract damage, and paralysis (2). There is insufficient reliable information available about the safety of marsh Labrador tea for its other uses.
PREGNANCY: LIKELY UNSAFE
when used orally; avoid using (2,19).
Marsh Labrador tea is considered to be a potential uterine stimulant and abortifacient (19,97164).
LACTATION:
Insufficient reliable information available; avoid using.
There is insufficient reliable information available about the safety of wild daisy.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Musc Lax. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, arnica might have additive effects with anticoagulant and antiplatelet drugs. Homeopathic arnica preparations are unlikely to have this interaction.
Details
In vitro evidence shows that sesquiterpene lactones in arnica flowers can decrease platelet aggregation (104). However, this effect has not been reported in humans.
|
Theoretically, taking copper with contraceptive drugs might increase the levels and toxic effects of copper.
Details
A meta-analysis of clinical studies suggests that chronic use of oral contraceptives increases serum copper levels by a mean of 57 mcg/dL. In most people, this resulted in levels above the normal reference range for copper (92395).
|
Theoretically, taking copper with penicillamine might decrease the absorption of penicillamine; separate dosing by at least 2 hours.
Details
|
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Details
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
Details
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
Details
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Details
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Details
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
Details
|
Gabapentin absorption can be decreased by magnesium.
Details
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
Details
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Details
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Details
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Details
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
Details
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Details
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Details
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Details
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Marsh Labrador tea can potentiate effects of barbiturates and alcohol (2).
|
Below is general information about the adverse effects of the known ingredients contained in the product Musc Lax. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, arnica is unsafe and can cause toxicity.
When used in homeopathic amounts, arnica seem to be generally well tolerated. Topically, arnica also seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Bleeding, gastroenteritis, hypertension, muscle paralysis, nausea and vomiting, shortness of breath.
Topically: Contact dermatitis and irritation.
Serious Adverse Effects (Rare):
Orally: Arrhythmia, coma, multi-organ failure, and death.
Cardiovascular ...Orally, arnica can cause tachycardia or a faster heart rate (11,17113,19101,19102). A 24-year-old female presented to the emergency department with palpitations and vomiting 24 hours after ingesting a cup of tea that reportedly contained arnica flowers picked from her local area of mountainous Southern California. The species was not specified in the article and there was no indication by the authors that any testing had been done to confirm the identity of the plant (90610).
Dermatologic ...Orally, arnica can cause irritation of mucous membranes (11,17113). Topically, arnica can cause contact itchiness, dry skin, and rash (17113). Oral lesions resulted in a woman who used a mouthwash incorrectly by not following dilution instructions. The mouthwash was 70% alcohol and contained arnica and oil of peppermint (19106).
Gastrointestinal ...Orally, arnica can cause stomach pain, nausea, vomiting, and diarrhea (11,17113,19101,19102). Homeopathic arnica has been reported to cause dry mouth (30C) and sore tongue (6C) (19107). A 24-year-old female presented to the emergency department with palpitations and vomiting 24 hours after ingesting a cup of tea that reportedly contained arnica flowers picked from her local area of mountainous Southern California. The species was not specified in the article and there was no indication by the authors that any testing had been done to confirm the identity of the plant (90610).
Musculoskeletal ...Adverse effects after ingesting arnica include muscle weakness (19101). Homeopathic arnica has been reported to result in the feeling of a "throbby" head or neck (19107).
Neurologic/CNS ...Orally, arnica may cause drowsiness, nervousness, and headache (11,17113,19101,19107).
Ocular/Otic ...In a case report, accidental intake of a large amount of a homeopathic Arnica-30 resulted in acute vision loss due to bilateral toxic optic neuropathy (19105).
Psychiatric ...Oral homeopathic arnica (6C) may cause depressed feelings, specifically a feeling of unhappiness (19107).
Pulmonary/Respiratory ...Orally, arnica can cause shortness of breath (11,17113).
General ...Orally, copper is generally well tolerated when consumed in doses below the tolerable upper intake level (UL).
Dermatologic
...Contact dermatitis caused by copper has been reported rarely.
A case report describes a 5-year-old male who developed recurrent fingertip dermatitis and a positive skin test to copper after playing with toy cars made with a copper-containing alloy (95538). Also, in a small clinical trial in children 1-3 months of age with umbilical granuloma, 3 of 33 children receiving a single topical application of copper sulfate developed superficial burns, whereas no superficial burns occurred in those receiving topical sodium chloride (109403).
In one case report, a 68-year-old male with type 2 diabetes and peripheral neuropathy developed second- and third-degree burns after wearing a copper-containing compression sock on the right leg for 3 hours while sitting in the sun. The patient received treatment with topical silver sulfadiazine and oral clindamycin. After 6 weeks, the patient was found to have multiple persistent wounds containing necrotic tissue which required debridement, daily dressing changes, and tubular compression. It is thought that the heat conductance of copper magnified the effects of sun exposure in this case (109402).
Endocrine ...There is evidence from observational studies that people with diabetes (type 1 or type 2) have higher copper levels in their blood than people without diabetes, although not all studies have shown this (95537). It is not known if elevated copper levels contribute to development or worsening of diabetes.
Hematologic ...A case report of copper overdose in a 28-year-old male resulted in hemolysis exacerbated by glucose-6-phosphate dehydrogenase deficiency. The patient was hospitalized, received D-penicillamine chelation, blood transfusion, and ultimately, 4 cycles of plasmapheresis which led to clinical recovery (112378).
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466). Antenatal magnesium sulfate may also cause nausea and vomiting (60915). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General ...Orally, large amounts of marsh Labrador tea can cause poisoning due to its ledol constituent (2). The essential oil of marsh Labrador tea can cause severe irritation of the gastrointestinal tract, vomiting, diarrhea, irritation and damage to the kidneys and urinary tract, heavy perspiration, myalgias, and arthralgias. It can also cause central nervous system excitation with narcotic intoxication, seizures, paralysis, and even death (2,97164). The content of ledol in marsh Labrador tea is unpredictable, and seems to range from 3.9% to 30.5% depending on the geographical source (97164).
Gastrointestinal ...Orally, ledol, a constituent of the essential oil of marsh Labrador tea, can cause gastrointestinal irritation resulting in vomiting, gastroenteritis, and diarrhea (97164).
Genitourinary ...Orally, the essential oil of marsh Labrador tea can cause irritation and damage to the kidneys and urinary tract (2).
Musculoskeletal ...Orally, the essential oil of marsh Labrador tea can cause myalgias and arthralgias (2).
Neurologic/CNS ...Orally, ledol, a constituent of marsh Labrador tea essential oil, can cause central nervous system excitation in a dose-dependent manner. Small amounts of ledol can lead to mild stimulating effects similar to caffeine, while larger doses can lead to spasms, seizures, paralysis, and even death (97164).
General ...There is currently a limited amount of information on the adverse effects of wild daisy. A thorough evaluation of safety outcomes has not been conducted.