Ingredients | Per Serving |
---|---|
Proprietary Blend
|
2.5 mL |
(leaf)
|
|
(Quassia )
(bark)
|
|
(root)
|
|
(hull)
|
|
(herb)
|
|
(leaf & flower)
|
|
(root)
|
|
(root)
|
|
(seed)
|
|
(leaf)
|
|
Vegetable Glycerin, distilled Water, Vitamin C, organic Grain Alcohol Note: approx. 10%
Below is general information about the effectiveness of the known ingredients contained in the product Para-Rid. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Para-Rid. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when the fruit (nut) is consumed in amounts normally found in food.
POSSIBLY UNSAFE ...when the bark is used orally or topically, due to its juglone content (2). When applied topically, juglone-containing bark can cause skin irritation. When used orally on a daily basis, the juglone-containing bark of a related species (English walnut) is associated with increased risk of tongue cancer and lip leukoplakia (2,12). There is insufficient reliable information available about the safety of the leaf or hull when used orally as a medicine or when applied topically.
PREGNANCY AND LACTATION: LIKELY SAFE
when the fruit (nut) is consumed in amounts normally found in foods.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when the bark is used orally or topically (12); avoid using.
There is insufficient reliable information available about the safety of black walnut leaf or hull when used orally in medicinal amounts during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Clove, clove oil, and eugenol have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when clove oil is applied topically (272). A clove oil 1% cream has been applied to the anus with apparent safety for up to 6 weeks (43487). A liposome-based product containing clove oil 45% has been applied to the palms with apparent safety for up to 2 weeks (100596).
LIKELY UNSAFE ...when clove smoke is inhaled. Smoking clove cigarettes can cause respiratory injury (17,43599). ...when clove oil is injected intravenously. This can cause pulmonary edema, hypoxemia, and acute dyspnea (16384). There is insufficient reliable information available about the safety of using clove orally in medicinal amounts.
CHILDREN: LIKELY UNSAFE
when clove oil is taken orally.
Ingesting 5-10 mL of undiluted clove oil has been linked to reports of coagulopathy, liver damage, and other serious side effects in infants and children up to 3 years of age (6,17,43385,43395,43419,43457,43652).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts found in foods (4912).
Clove, clove oil, and eugenol have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). There is insufficient reliable information available about the safety of using clove in medicinal amounts during pregnancy and lactation; avoid using.
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (12).
POSSIBLY UNSAFE ...when used orally in large amounts. Elecampane can cause gastrointestinal upset and symptoms of paralysis (12).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally (12); avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Fennel has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when fennel essential oil or extract is used orally and appropriately, short-term. Twenty-five drops (about 1.25 mL) of fennel fruit extract standardized to fennel 2% essential oil has been safely used four times daily for 5 days (49422). Also, two 100 mg capsules each containing fennel 30% essential oil standardized to 71-90 mg of anethole has been safely used daily for 8 weeks (97498). Powdered fennel extract has been used with apparent safety at a dose of 800 mg daily for 2 weeks (104199). ...when creams containing fennel 2% to 5% are applied topically (49429,92509).
CHILDREN: POSSIBLY SAFE
when combination products containing fennel are used to treat colic in infants for up to one week.
Studied products include up to 20 mL of a fennel seed oil emulsion; a specific product (ColiMil) containing fennel 164 mg, lemon balm 97 mg, and German chamomile 178 mg; and up to 450 mL of a specific tea (Calma-Bebi, Bonomelli) containing fennel, chamomile, vervain, licorice, and lemon balm (16735,19715,49428).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Observational research has found that regular use of fennel during pregnancy is associated with shortened gestation (100513).
LACTATION: POSSIBLY UNSAFE
when used orally.
Case reports have linked consumption of an herbal tea containing extracts of fennel, licorice, anise, and goat's rue to neurotoxicity in two breast-feeding infants. The adverse effect was attributed to anethole, a constituent of fennel and anise (16744). However, levels of anethole were not measured in breastmilk, and the herbal tea was not tested for contaminants. Furthermore, other adverse effects related to use of fennel during lactation have not been reported. However, until more is known, avoid using.
LIKELY SAFE ...when the root preparations are used in amounts commonly found in foods. Gentian root is categorized by the FDA as a safe food additive flavoring in the US (4912).
POSSIBLY SAFE ...when gentian root is used orally in a specific combination that contains gentian root, elderflower, verbena, cowslip flower, and sorrel (SinuComp, Sinupret) (374,379,95907). There is insufficient reliable information available about the safety of the topical use of gentian.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of gentian in medicinal amounts during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
LIKELY SAFE ...when olive fruit is used orally and appropriately in amounts commonly found in foods.
POSSIBLY SAFE ...when olive leaf extract is used orally and appropriately. Olive leaf extract providing 51-100 mg oleuropein daily has been used with apparent safety for 6-8 weeks (92245,92247,101860). There is insufficient reliable information available about the safety of olive fruit extract when used in amounts greater than those found in foods.
PREGNANCY AND LACTATION:
Insufficient reliable information available; stick with amounts commonly found in foods.
LIKELY SAFE ...when peppermint oil is used orally, topically, or rectally in medicinal doses. Peppermint oil has been safely used in multiple clinical trials (3801,3804,6190,6740,6741,10075,12009,13413,14467,17681)(17682,68522,96344,96360,96361,96362,96363,96364,96365,99493).
POSSIBLY SAFE ...when peppermint leaf is used orally and appropriately, short-term. There is some clinical research showing that peppermint leaf can be used safely for up to 8 weeks (12724,13413). The long-term safety of peppermint leaf in medicinal doses is unknown. ...when peppermint oil is used by inhalation as aromatherapy (7107). There is insufficient reliable information available about the safety of using intranasal peppermint oil.
CHILDREN: POSSIBLY SAFE
when used orally for medicinal purposes.
Enteric-coated peppermint oil capsules have been used with apparent safety under medical supervision in children 8 years of age and older (4469).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (96361).
There is insufficient information available about the safety of using peppermint in medicinal amounts during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Quassia has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used topically and appropriately. A 4% quassia gel has been safely used twice daily for up to 45 days (99995).
POSSIBLY UNSAFE ...when used orally in medicinal amounts. Quassia wood contains cardioactive glycosides (4), but toxicity is likely limited by emetic effects of large doses (4). There is insufficient reliable information available about the safety of rectal use of quassia.
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally; avoid using.
Quassia has cytotoxic and emetic properties (4,18,19). There is insufficient reliable information available about the safety of rectal or topical use during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally in food amounts (6,4120). There is insufficient reliable information available about the safety of rooibos when used orally in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Sweet Annie 300 mg daily has been used with apparent safety in studies lasting up to 9 months (11055,94520,94521). Sweet Annie tea, prepared from dried leaves and twigs and consumed in divided doses daily, has been used with apparent safety for up to 7 days (11055,11058). While rare, there is some concern that Sweet Annie might cause liver damage (16895,103254,103255).
POSSIBLY SAFE ...when used sublingually and appropriately, short-term. Sweet Annie up to 2400 biological units daily as sublingual immunotherapy has been used with apparent safety in studies lasting up to 16 months (106441,112392,112393,112394). There is insufficient reliable information available about the safety of Sweet Annie when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Para-Rid. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, concomitant use with drugs with sedative properties may cause additive effects and side effects.
Details
|
Theoretically, catnip might reduce excretion and increase levels of lithium.
Details
Catnip is thought to have diuretic properties which might reduce lithium excretion. The dose of lithium might need to be decreased.
|
Theoretically, clove oil may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, concomitant use of clove extracts with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Clinical and laboratory research suggest that polyphenol extracts from clove flower buds might lower blood glucose levels (100595). Dosing adjustments for insulin or oral hypoglycemic agents may be necessary when taken with clove. Monitor blood glucose levels closely.
|
Theoretically, topical application of clove oil with ibuprofen might increase the absorption and side effects of topical ibuprofen.
Details
Laboratory research shows that topical application of clove oil increases the absorption of topical ibuprofen (98854). This interaction has not been reported in humans.
|
Theoretically, elecampane may cause additive sedative effects when taken with CNS depressants.
Details
Elecampane might have sedative effects (4).
|
Theoretically, fennel might increase the risk of bleeding when used with antiplatelet or anticoagulant drugs.
Details
|
Theoretically, fennel might decrease the levels and clinical effects of ciprofloxacin.
Details
Animal research shows that fennel reduces ciprofloxacin bioavailability by nearly 50%, possibly due to the metal cations such as calcium, iron, and magnesium contained in fennel. This study also found that fennel increased tissue distribution and slowed elimination of ciprofloxacin (6135). |
Theoretically, taking large amounts of fennel might decrease the effects of contraceptive drugs due to competition for estrogen receptors.
Details
|
Theoretically, fennel might increase levels of drugs metabolized by CYP3A4.
Details
|
Theoretically, taking large amounts of fennel might interfere with hormone replacement therapy due to competition for estrogen receptors.
Details
|
Theoretically, taking large amounts of fennel might decrease the antiestrogenic effect of tamoxifen.
Details
Some constituents of fennel have estrogenic activity (11), which may interfere with the antiestrogenic activity of tamoxifen. |
Theoretically, taking gentian with antihypertensive drugs might increase the risk of hypotension.
Details
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Details
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
Details
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
Details
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
Details
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
Details
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
Details
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
Details
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
Details
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Details
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
Details
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Details
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Details
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, peppermint oil might increase the levels and adverse effects of cyclosporine.
Details
In animal research, peppermint oil inhibits cyclosporine metabolism and increases cyclosporine levels. Inhibition of cytochrome P450 3A4 (CYP3A4) may be partially responsible for this interaction (11784). An interaction between peppermint oil and cyclosporine has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP1A2 substrates.
Details
In vitro and animal research shows that peppermint oil and peppermint leaf inhibit CYP1A2 (12479,12734). However, in clinical research, peppermint tea did not significantly affect the metabolism of caffeine, a CYP1A2 substrate. It is possible that the 6-day duration of treatment may have been too short to identify a difference (96359).
|
Theoretically, peppermint might increase the levels of CYP2C19 substrates.
Details
In vitro research shows that peppermint oil inhibits CYP2C19 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP2C9 substrates.
Details
In vitro research shows that peppermint oil inhibits CYP2C9 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP3A4 substrates.
Details
|
Theoretically, due to reports that quassia increases stomach acid, quassia might decrease the effectiveness of antacids (19).
|
In animals, quassia extract reduced levels of fasting glucose (99998). Theoretically, quassia might have additive effects when used with antidiabetes drugs. This might increase the risk of hypoglycemia in some patients. Monitor blood glucose levels closely.
Details
Some antidiabetes drugs include glimepiride (Amaryl), glyburide (DiaBeta, Glynase PresTab, Micronase), insulin, metformin (Glucophage), pioglitazone (Actos), rosiglitazone (Avandia), and others.
|
Quassin and neoquassin, constituents of quassia, have been shown to inhibit cytochrome P450 1A1 (CYP1A1) enzymes in vitro (99996). This effect has not been shown in humans. Theoretically, concomitant use of quassia with drugs metabolized by CYP1A1 may decrease the clearance of these drugs and increase their effects. Some of these drugs include chlorzoxazone, theophylline, and bufuralol.
|
Theoretically, concomitant use with cardiac medications might increase the risk of therapeutic and adverse effects (4).
|
Overuse of quassia might compound diuretic-induced potassium loss (13). There is some concern that people taking quassia along with potassium depleting diuretics might have an increased risk for hypokalemia. Initiation of potassium supplementation or an increase in potassium supplement dose may be necessary for some patients.
Details
Some diuretics that can deplete potassium include chlorothiazide (Diuril), chlorthalidone (Thalitone), furosemide (Lasix), and hydrochlorothiazide (HCTZ, Hydrodiuril, Microzide), and others.
|
Theoretically, due to reports that quassia increases stomach acid, quassia might decrease the effectiveness of H2-blockers (19). The H2 blockers include cimetidine (Tagamet), ranitidine (Zantac), nizatidine (Axid), and famotidine (Pepcid).
|
Theoretically, due to reports that quassia increases stomach acid, quassia might decrease the effectiveness of PPIs (19). PPIs include omeprazole (Prilosec), lansoprazole (Prevacid), rabeprazole (Aciphex), pantoprazole (Protonix), and esomeprazole (Nexium).
|
Theoretically, taking rooibos with ACEIs may increase the therapeutic and adverse effects of ACEIs.
Details
Clinical research in healthy adults shows that taking a single dose of rooibos tea, 400 mL orally, inhibits angiotensin-converting enzyme activity (101253).
|
Theoretically, taking rooibos with atorvastatin may increase the therapeutic and adverse effects of atorvastatin.
Details
Animal research shows that consuming green rooibos extract with atorvastatin daily for 3 weeks increases the maximum plasma concentration of atorvastatin by 6-fold and reduces the clearance of atorvastatin (104211).
|
Theoretically, taking rooibos with CYP1A2 substrates may increase the effects of CYP1A2 substrates.
Details
In vitro research shows that the methanol extract of rooibos leaves and stems inhibits CYP1A2 enzyme activity (101251).
|
Theoretically, taking rooibos with CYP2C19 substrates may increase the effects of CYP2C19 substrates.
Details
In vitro research shows that the methanol extract of rooibos leaves and stems strongly inhibits CYP2C19 enzyme activity (101251).
|
Theoretically, taking rooibos with CYP2C9 substrates may increase the effects of CYP2C9 substrates.
Details
In vitro research shows that the methanol extract of rooibos leaves and stems inhibits CYP2C9 enzyme activity (101251).
|
Theoretically, taking rooibos with CYP2D6 substrates may increase the effects of CYP2D6 substrates.
Details
In vitro research shows that the methanol extract of rooibos leaves and stems inhibits CYP2D6 enzyme activity (101251).
|
Theoretically, taking rooibos with CYP3A4 substrates may increase the effects of CYP3A4 substrates.
Details
In vitro research shows that the methanol extract of rooibos leaves and stems strongly inhibits CYP3A4 enzyme activity (101251).
|
Sweet Annie may alter plasma levels and clinical effects of drugs metabolized by CYP2B6.
Details
In vitro research shows that the Sweet Annie constituent artemisinin induces CYP2B6, possibly increasing CYP2B6 activity by 1.6-fold (92501,109316). However, Sweet Annie extract seems to inhibit the activity of CYP2B6 in vitro, suggesting that other constituents of Sweet Annie play a role in its effects on the overall activity of this enzyme (109316). More information is needed to determine whether taking Sweet Annie extract affects the metabolism of CYP2B6 substrates.
|
Sweet Annie may alter plasma levels and clinical effects of drugs metabolized by CYP3A4.
Details
In vitro research shows that the Sweet Annie constituent artemisinin induces CYP3A4, possibly increasing CYP3A4 activity by 1.9-fold (92501). However, Sweet Annie extract seems to inhibit the activity of CYP3A4 in vitro, suggesting that other constituents of Sweet Annie play a role in its effects on the overall activity of this enzyme (109316). More information is needed to determine whether taking Sweet Annie extract affects the metabolism of CYP3A4 substrates.
|
Theoretically, concomitant use might have additive adverse hepatotoxic effects.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product Para-Rid. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, black walnut fruit (nut) is well tolerated.
However, the leaf, bark, and hull of black walnut contain high quantities of tannins, which may cause adverse effects when used orally or topically.
Most Common Adverse Effects:
Orally: The leaf, bark, and hull can cause gastrointestinal upset.
Topically: Hull preparations may cause a temporary yellow or brown discoloration at the site of application. The leaf, bark, and hull can cause skin irritation.
Serious Adverse Effects (Rare):
Orally: The bark may increase the risk for tongue cancer or lip leukoplakia when used long-term.
All routes of administration: Allergic reactions, including anaphylaxis.
Dermatologic ...Topically, black walnut leaf, bark, or hull may have an irritating effect on the skin due to tannin content. Black walnut hull preparations might cause a temporary yellow or brown discoloration of the skin at the site of application (12).
Gastrointestinal ...Orally, black walnut leaf, bark, or hull may cause gastrointestinal upset due to tannin content (12). Also, daily use of the juglone-containing bark of a related species (English walnut) is associated with increased risk of tongue cancer and lip leukoplakia (2,12).
Hepatic ...Orally, black walnut leaf, bark, or hull may cause liver damage if taken for extended periods of time due to tannin content (12).
Immunologic ...Tree nuts, which include black walnuts, can cause allergic reactions in sensitive individuals. Due to the prevalence of this allergy in the general population, tree nuts are classified as a major food allergen in the United States (105410).
Renal ...Orally, black walnut leaf, bark, or hull may cause kidney damage if taken for extended periods of time due to tannin content (12).
General
...Orally, catnip is generally well-tolerated when used in appropriate amounts.
Most Common Adverse Effects:
Orally: Headache, malaise, vomiting.
Gastrointestinal ...Orally, large amounts of catnip might cause stomachache and vomiting (6,2596).
Neurologic/CNS ...Orally, taking too much catnip may result in headache and malaise (6). In one case, a toddler developed a stomachache and irritability, followed by lethargy and a hypnotic state, after ingesting raisins soaked in catnip tea and chewing on the tea bag (5,2596).
General
...Orally, clove is well tolerated when consumed as a spice; however, clove oil in doses of only 5-10 mL can be toxic in children.
Topically, clove is generally well tolerated. When inhaled or used intravenously, clove may be unsafe.
Most Common Adverse Effects:
Topically: Burning, contact dermatitis, dental decay, itching, mucous membrane irritation, tingling, ulcers.
Inhaled: Dental decay, hypertension, itching, tachycardia.
Serious Adverse Effects (Rare):
Orally: Liver failure, respiratory distress.
Inhaled: Pneumonitis, pulmonary edema, respiratory distress.
Cardiovascular ...Smoking clove cigarettes increases heart rate and systolic blood pressure (12892).
Dental ...Population research has found that the risk of dental decay is increased in clove cigarette smokers (43332). Repeated topical application of clove in the mouth can cause gingival damage and skin and mucous membrane irritation (4,272,512). Eugenol, a constituent of clove and a material commonly found in dentistry, has been associated with side effects including gum inflammation and irritation (43365,43373,43522).
Dermatologic ...The American Dental Association has accepted clove for professional use, but not nonprescription use, due to potential damage to soft tissue that may be induced by clove application. In clinical research, small aphthous-like ulcers appeared in the area of the mouth where clove gel was applied in four participants (43448). Skin irritation and stinging have been reported with clove oil application (43338,43626). In a 24-year-old, exposure to a clove oil spill resulted in permanent local anesthesia and anhidrosis, or lack of sweating, at the affected area (43626).
Endocrine ...A case of hypoglycemia and metabolic acidosis have been reported after administration of one teaspoon of clove oil to a seven-month-old infant (43457). A case of electrolyte imbalance following accidental ingestion by a seven-month-old has also been reported (6).
Hematologic ...A case of disseminated intravascular coagulation has been reported in a 2-year-old patient after consuming between 5-10 mL of clove oil. The patient was treated with heparin, fresh frozen plasma, protein C, factor VII, and antithrombin III. On the fifth day, the patient started to improve and made a full recovery (43652).
Hepatic ...There are three cases of hepatic failure occurring in children after ingestion of 5-10 mL of clove oil (43395,43419,43652). Liver injury also occurred in a 3-year-old male (96949). These patients were successfully treated with N-acetylcysteine. The course of liver injury seems to be milder and shorter with early N-acetylcysteine treatment (43395,43419,96949). Another patient, who also presented with disseminated intravascular coagulation, was successfully treated with heparin, fresh frozen plasma, protein C, factor VII, and antithrombin III (43652).
Immunologic ...Contact dermatitis and urticaria has been reported following topical exposure to clove oil or eugenol, a constituent of clove oil (12635,43339,43606,43346).
Neurologic/CNS ...CNS depression has been reported in a 7-month-old who was given one teaspoon of clove oil accidentally in place of mineral oil for diarrhea. The patient was successfully treated with supportive care and gastric lavage (43457). A case of confusion and inability to speak has been reported secondary to oral exposure to clove oil and alcohol. The patient required intubation and was successfully treated with thiamine and normal saline (43580). Seizure and coma have been reported in a two-year-old male after ingesting 5-10 mL of clove oil (43652).
Pulmonary/Respiratory
...Clove cigarettes have been associated with throat and chest tightness (43337), pulmonary edema (43618), and fatal aspiration pneumonitis (43599).
The causative factor may be clove alone or clove along with other substances found in cigarettes. Clove cigarettes contain significant amounts of nicotine, tar, and carbon monoxide and increase plasma levels of nicotine and exhaled carbon monoxide, which might cause long-term health effects similar to tobacco smoking (12892). According to the American Medical Association, inhaling clove cigarette smoke has been associated with severe lung injury in a few susceptible individuals with prodromal respiratory infection. Also, some individuals with normal respiratory tracts have apparently suffered aspiration pneumonitis as the result of a diminished gag reflex induced by a local anesthetic action of eugenol, which is volatilized into the smoke (43602).
Intravenous injection of clove oil in a 32-year-old female resulted in hypoxia, acute dyspnea, interstitial and alveolar infiltrates, and non-cardiogenic pulmonary edema. The patient was managed with supplemental oxygen and recovered over the next seven days (16384).
Occupational exposure to eugenol, a constituent of clove, has also been reported to cause asthma and rhinitis (43492).
Renal ...Proteinuria and other urinary abnormalities were observed in a seven-month-old infant given one teaspoon of clove oil accidentally in place of mineral oil for diarrhea. The patient was successfully treated with supportive care and gastric lavage (43457).
General
...There is a limited amount of information available about the adverse effects of elecampane.
Most Common Adverse Effects:
Topically: Allergic contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Diarrhea, vomiting, spasms, and symptoms of paralysis at high doses.
Gastrointestinal ...Orally, large doses of elecampane may cause vomiting and diarrhea (12).
Immunologic ...Topically, elecampane can cause allergic contact dermatitis (6958,48729,48731), especially in individuals sensitive to the Asteraceae/Compositae family. Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Musculoskeletal ...Orally, large doses of elecampane may cause spasms and symptoms of paralysis (12).
General
...Orally and topically, fennel seems to be well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal discomfort, photosensitivity, and allergic reactions in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Seizures.
Dermatologic ...Advise patients to avoid excessive sunlight or ultraviolet light exposure while using fennel (19). Allergic reactions affecting the skin such as atopic dermatitis and photosensitivity may occur in patients who consume fennel (6178,49507).
Gastrointestinal ...Orally, fennel may cause gastrointestinal complaints, including nausea and vomiting (19146,104196).
Hematologic ...Methemoglobinemia has been reported in four infants following intoxication related to ingestion of a homemade fennel puree that may have been made from improperly stored fennel (49444).
Immunologic ...A case report describes an 11-year-old male who developed an allergy to fennel-containing toothpaste. Immediately after using the toothpaste, the patient experienced sneezing, coughing, itchy mouth, rhinorrhea, nasal congestion, wheezing, difficulty breathing, and palpitations, which resolved within 10 minutes of spitting out the toothpaste and rinsing the mouth. In challenge tests, the patient reacted to chewing fresh fennel root, but not ground fennel seeds (103822).
Neurologic/CNS ...Orally, fennel oil has been associated with tonic clonic and generalized seizures (12868). New-onset cluster headaches are reported in a 24-year-old female while using a toothpaste containing fennel and camphor for 3 months. The headaches resolved upon stopping the toothpaste (112368). It is unclear if this adverse effect can be attributed to fennel, camphor, or the combination.
Pulmonary/Respiratory ...Orally, fennel and fennel seed have been reported to cause bronchial asthma (49478).
General
...Orally, gentian root, in combination with other herbs, seems to be generally well tolerated.
There is insufficient reliable information available about the adverse effects of gentian when taken as a medicine alone.
Most Common Adverse Effects:
Orally: Allergic skin reactions, gastrointestinal discomfort.
Gastrointestinal ...Orally, gentian root, in combination with other herbs, has been reported to cause gastrointestinal adverse effects (374,379). Gastrointestinal intolerance occurred in patients with cancer-associated anorexia who took gentian tincture 1 mL three times daily, in conjunction with turmeric 1 gram and ginger 1 gram twice daily, for 14 days. Six of 17 patients discontinued the regimen due to nausea, 3 due to vomiting, 2 due to diarrhea, and 2 due to bloating. It is unclear if this gastrointestinal intolerance was caused by gentian, the other herbs, or the patients' predisposing conditions (96263).
Immunologic ...Orally, gentian root, in combination with other herbs, has been reported to cause allergic skin reactions (374,379). It is unclear if these reactions were caused by gentian, the other herbs, or the combination.
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...Orally, olive fruit is well tolerated when used in typical food amounts.
Olive leaf extract seems to be well tolerated.
Most Common Adverse Effects:
Orally: Headache and stomach discomfort.
Dermatologic ...Orally, one patient in one clinical trial reported bad skin and acne after using olive leaf extract (101860).
Gastrointestinal ...Orally, three patients in one clinical trial reported stomach ache after using olive leaf extract (101860).
Neurologic/CNS ...Orally, three patients in one clinical trial reported headache after using olive leaf extract (101860).
Psychiatric ...In one case report, a 67-year-old female experienced irritability, anger, a lack of control, and feelings of sadness and negativity after consuming a multi-ingredient product containing olive leaf extract 5 grams, horseradish root, and eyebright daily for 38 days. All psychiatric symptoms disappeared within days of stopping the combined product. It is hypothesized that the hydroxytyrosol component of olive leaf extract contributed to these symptoms due to its chemical similarity to dopamine; however, it is not clear if these symptoms were due to the olive leaf extract or to the other ingredients (96245).
Pulmonary/Respiratory ...Olive tree pollen can cause seasonal respiratory allergy (1543).
General
...Orally, topically, or rectally, peppermint oil is generally well tolerated.
Inhaled,
peppermint oil seems to be well tolerated. Intranasally, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted. Orally, peppermint leaf seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, anal burning, belching, diarrhea, dry mouth, heartburn, nausea, and vomiting.
Topically: Burning, dermatitis, irritation, and redness.
Dermatologic
...Topically, peppermint oil can cause skin irritation, burning, erythema, and contact dermatitis (3802,11781,31528,43338,68473,68457,68509,96361,96362).
Also, a case of severe mucosal injury has been reported for a patient who misused an undiluted over the counter mouthwash that contained peppermint and arnica oil in 70% alcohol (19106).
In large amounts, peppermint oil may cause chemical burns when used topically or orally. A case of multiple burns in the oral cavity and pharynx, along with edema of the lips, tongue, uvula, and soft palate, has been reported for a 49-year-old female who ingested 40 drops of pure peppermint oil. Following treatment with intravenous steroids and antibiotics, the patient's symptoms resolved over the course of 2 weeks (68432). Also, a case of chemical burns on the skin and skin necrosis has been reported for a 35-year-old male who spilled undiluted peppermint oil on a previous skin graft (68572). Oral peppermint oil has also been associated with burning mouth syndrome and chronic mouth ulceration in people with contact sensitivity to peppermint (6743). Also, excessive consumption of mint candies containing peppermint oil has been linked to cases of stomatitis (13114).
Gastrointestinal ...Orally, peppermint oil can cause heartburn, nausea and vomiting, anal or perianal burning, abdominal pain, belching, dry mouth, diarrhea, and increased appetite (3803,6740,6741,6742,10075,11779,11789,17682,68497,68514)(68532,68544,96344,96360,102602,104219,107955). Enteric-coated capsules might help to reduce the incidence of heartburn (3802,4469,6740,11777). However, in one clinical study, a specific enteric-coated formulation of peppermint oil (Pepogest; Nature's Way) taken as 180 mg three times daily was associated with a higher rate of adverse effects when compared with placebo (48% versus 31%, respectively). Specifically, of the patients consuming this product, 11% experienced belching and 26% experienced heartburn, compared to 2% and 12%, respectively, in the placebo group (107955). A meta-analysis of eight small clinical studies in patients with irritable bowel syndrome shows that taking enteric-coated formulations of peppermint oil increases the risk of gastroesophageal reflux symptoms by 67% when compared with a control group (109980). Enteric-coated capsules can also cause anal burning in people with reduced bowel transit time (11782,11789).
Genitourinary ...Orally, a sensitive urethra has been reported rarely (102602).
Hepatic ...One case of hepatocellular liver injury has been reported following the oral use of peppermint. Symptoms included elevated liver enzymes, fatigue, jaundice, dark urine, and signs of hypersensitivity. Details on the dosage and type of peppermint consumed were unavailable (96358).
Immunologic ...One case of IgE-mediated anaphylaxis, characterized by sudden onset of lip and tongue swelling, tightness of throat, and shortness of breath, has been reported in a 69-year-old male who consumed peppermint candy (89479). An allergic reaction after use of peppermint oil in combination with caraway oil has been reported in a patient with a history of bronchial asthma (96344). It is not clear if this reaction occurred in response to the peppermint or caraway components.
Neurologic/CNS ...Orally, headache has been reported rarely (102602).
Ocular/Otic ...Orally, peppermint has been reported to cause blurry vision (3803).
General
...Orally, quassia can cause mucous membrane irritation, nausea, and vomiting when used in medicinal amounts (4,18).
Long-term use can cause vision changes and blindness (18).
Topically, quassia seems to be well tolerated (99995). No adverse effects have been reported.
Gastrointestinal ...Orally, quassia has been reported to cause mucous membrane irritation, nausea, and vomiting when used in medicinal amounts (4,18).
Ocular/Otic ...Orally, long-term use of quassia can cause vision changes and blindness (18).
General
...There is currently a limited amount of information on the adverse effects of roobios.
A thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity.
Hepatic ...Orally, large and long-term doses of rooibos tea might cause hepatotoxicity in some susceptible patients. In a case-report, a 37-year-old man drinking 10 cups of rooibos tea daily for over a year presented with hepatic dysfunction and thrombocytopenia (101254).
General
...Orally, Sweet Annie is generally well-tolerated.
Most Common Adverse Effects:
Orally: Nausea and vomiting.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity.
Gastrointestinal ...Orally, Sweet Annie might cause gastrointestinal upset including nausea and vomiting in some patients (11058,112393).
Hepatic
...Orally, Sweet Annie might cause hepatic adverse effects (16895,103254,103255).
In one case, a 52-year-old patient developed hepatitis after taking the Sweet Annie constituent artemisinin 200 mg three times daily for 10 days. The patient developed abdominal pain and dark urine and was found to have elevated liver enzymes consistent with hepatitis. Symptoms resolved within 2 weeks of discontinuing use. Although it is possible this supplement caused liver disease in this patient, it is not certain. In clinical trials evaluating artemisinin, elevated liver enzymes have only been reported in around 0.9% of patients. However, the dose of artemisinin in this case was substantially higher than a typical dose (16895). A case of severe acute cholestatic hepatitis has also been reported in a 51-year-old male who drank Sweet Annie tea daily, prepared using 1.25 grams of Sweet Annie powder, for malaria prophylaxis during a 4-week trip to Ethiopia. Three weeks after his return, he presented with malaise, abdominal discomfort, jaundice, elevated liver enzymes, and markers of cholestasis. The patient was treated with corticosteroids and ursodeoxycholic acid and ultimately recovered (103255).
A series of cases linking the use of a supercritical carbon dioxide extract of Sweet Annie to hepatoxicity has also been reported. Of the 29 reports of adverse hepatic reactions to this extract, 19 patients noted symptoms within 12 weeks of starting the extract, 16 patients experienced jaundice, and 9 patients required hospitalization. Other common symptoms of hepatotoxicity included abdominal pain, vomiting, nausea, fever, headache, anorexia, malaise, fatigue, and lethargy. All but one case involved doses below or up to the extract's recommended dose of 300 mg daily. Upon discontinuation, symptoms resolved completely or were improved in nearly all cases (103254).
Immunologic ...One case of a mild allergic reaction to Sweet Annie tea has been reported. The reaction was characterized by a rash and cough that resolved quickly and did not require treatment (11059). When low doses are taken sublingually by individuals allergic to Sweet Annie, numbness of the tongue and throat itching have been reported (109315,112392,112393,112394).