Ingredients | Amount Per Serving |
---|---|
(GABA)
|
500 mg |
(Withania somnifera )
(root & leaf)
(10% Withanolides)
|
250 mg |
150 mg | |
(5-HTP)
(Griffonia simplicifolia)
|
50 mg |
5 mg |
Cellulose Capsule, Rice Flour
Below is general information about the effectiveness of the known ingredients contained in the product Relax-ALL Sleep. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Relax-ALL Sleep. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. 5-HTP has been used safely in doses up to 400 mg daily for up to one year (913,30007,30130). Doses up to 1.2 grams daily have been used with apparent safety for up to 10 months (914,30018,30125,30164,30165). Doses of 3 grams daily have been used safely for 3 weeks (30138). There is some controversy about the safety of 5-HTP due to concerns for eosinophilia myalgia syndrome (EMS) (902,919,7067,10084,30178). There is speculation that only certain, contaminated 5-HTP products may cause this serious adverse effect (88174). So far, there is not enough evidence to know if EMS is caused by 5-HTP, contaminants, or other unknown factors (919,7067,10084).
POSSIBLY UNSAFE ...when used orally in large doses. Doses of 6-10 grams daily have been associated with severe gastrointestinal effects and hyperkinesis (30139,30183). The risk may be reduced if the dose is increased gradually.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Doses of 5-HTP up to 5 mg/kg daily have been used safely for up to 3 years in infants and children up to 12 years old (30128,30153,88173).
There is some controversy about the safety of 5-HTP due to concerns for eosinophilia myalgia syndrome (EMS) (902,919,7067,10084,30178). There is speculation that only certain, contaminated 5-HTP products may cause this serious adverse effect (88174). So far, there is not enough evidence to know if EMS is caused by 5-HTP, contaminants, or other unknown factors (919,7067,10084).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Ashwagandha has been used with apparent safety in doses of up to 1250 mg daily for up to 6 months (3710,11301,19271,90649,90652,90653,97292,101816,102682,102683) (102684,102685,102687,103476,105824,109586,109588,109589,109590). ...when used topically. Ashwagandha lotion has been used with apparent safety in concentrations up to 8% for up to 2 months (111538).
PREGNANCY: LIKELY UNSAFE
when used orally.
Ashwagandha has abortifacient effects (12).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. GABA has been used with apparent safety in doses of 75 mg to 1.5 grams daily for up to one month in small clinical studies (19361,19363,19369,110134,110135). There is insufficient reliable information available about the safety of GABA when used orally for longer than one month or when used sublingually or intravenously.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term or as a single dose. Melatonin seems to be safe when used up to 8 mg daily for up to 6 months. Melatonin 10 mg daily has been used safely for up to 2 months (1049,1068,1077,1085,1738,1754,5854,5855,5857,12226), (14283,15005,62850,89502,89503,88285,88289,88293,88294,88295)(88296,88299,89508,89510,89511,96313,96314,96316,96317,96319)(96321,97438,99345,103484,106301,106303,107811,110286,110299). ...when used topically and appropriately (1066,1768,1769,4713,4714,96314).
POSSIBLY SAFE ...when doses of up to 8 mg daily are used orally and appropriately for longer than 6 months, doses of 10 mg daily are used for longer than 2 months, or doses of 50 mg daily are used for up to 5 days (7040,7043,62435,106296,107811). There is some evidence melatonin can be used safely in doses of up to 10 mg daily for up to 2 years in some patients (7040,7043,62435). ...when used intravenously under the supervision of a healthcare professional. A one-time dose of intravenous melatonin combined with a single bolus of intracoronary melatonin has been used with apparent safety in one clinical trial (96324).
CHILDREN: POSSIBLY SAFE
when used orally in low doses, short-term (9980,15034,62792,88282,88283,88286,88288,95748,96318,97434)(97439,97446,106293,110292,113216,113223,113224).
Although melatonin has been safely used in clinical research in doses up to 12 mg daily (88283), it is often advised that daily doses of melatonin be limited to 3 mg daily for children and infants 6 months or older and 5 mg daily for adolescents (95746). There is some concern that taking melatonin might adversely affect gonadal development in children (1739,1740,1742,1743). While some evidence suggests that long-term use of melatonin in children may delay puberty, the available research includes only three small, observational studies with incomplete follow-up and poor measures of pubertal timing (95747). Although rare, pediatric overdose with melatonin has resulted in hospitalization, mechanical ventilation, and death (108145). Due to potential risks, melatonin should be used only in children with a medical reason for use; it should not be used to promote sleep in otherwise healthy children. There is insufficient reliable information available about the safety of melatonin when used long-term.
PREGNANCY: POSSIBLY UNSAFE
when used orally or parenterally in high doses or with frequent use.
High doses of melatonin 75-300 mg daily seem to inhibit ovulation, causing a contraceptive effect (769,1740,6002,8271,95728). Advise pregnant patients and patients wishing to become pregnant to avoid using melatonin frequently or in high doses.
There is insufficient reliable information available about the safety of melatonin in lower doses during pregnancy. Some research shows that taking melatonin 2 mg daily does not affect anterior pituitary hormone levels in females who are not pregnant; this suggests that low doses may not have a contraceptive effect (62898). Other research shows that taking melatonin 3 mg daily during the follicle stimulating stage of in vitro fertilization does not negatively impact pregnancy rates (62818,62819,88297,89512,88297). However, it is not known if melatonin is safe for use throughout pregnancy (95729). Until more is known about the safety of melatonin, avoid using during pregnancy.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. L-theanine has been used safely in clinical research in doses of up to 900 mg daily for 8 weeks (12188,36439,96331,96332,96334,96341,97923,101986,104976). There is insufficient reliable information available about the safety of L-theanine when used long-term.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A specific L-theanine product (Suntheanine, Taiyo Kagaku) 200 mg twice daily has been used safely in males aged 8-12 years for up to 6 weeks (91744).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Relax-ALL Sleep. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Combining 5-HTP and carbidopa can increase the risk of serotonergic side effects.
Details
Carbidopa is sometimes used with 5-HTP to minimize peripheral 5-HTP metabolism and boost the amount that reaches the brain. However, this combination might also increase the risk of some side effects including hypomania, restlessness, rapid speech, anxiety, insomnia, and aggressiveness (30076,30132,30158). Combining carbidopa and 5-HTP might also increase the risk of scleroderma-like skin changes due to elevated serotonin levels (1403).
|
Theoretically, concomitant use of 5-HTP with medications that cause sedation might have additive effects.
Details
|
Combining serotonergic drugs with 5-HTP might cause additive serotonergic effects.
Details
5-HTP can increase serotonin levels and cause serotonergic effects (901). Theoretically, combining serotonergic drugs with 5-HTP might increase the risk of serotonergic side effects, including serotonin syndrome and cerebral vasoconstrictive disorders (8056). However, serotonin syndrome with 5-HTP has not yet been reported in humans (104941). Monitor patients for signs of serotonin syndrome and other serotonergic side effects if using 5-HTP with serotonergic drugs.
|
Theoretically, taking ashwagandha with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking ashwagandha with antihypertensive drugs might increase the risk of hypotension.
Details
Animal research suggests that ashwagandha might lower systolic and diastolic blood pressure (19279). Theoretically, ashwagandha might have additive effects when used with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, taking ashwagandha might increase the sedative effects of benzodiazepines.
Details
There is preliminary evidence that ashwagandha might have an additive effect with diazepam (Valium) and clonazepam (Klonopin) (3710). This may also occur with other benzodiazepines.
|
Theoretically, taking ashwagandha might increase the sedative effects of CNS depressants.
Details
Ashwagandha seems to have sedative effects. Theoretically, this may potentiate the effects of barbiturates, other sedatives, and anxiolytics (3710).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research shows that ashwagandha extract induces CYP1A2 enzymes (111404).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP3A4 substrates.
Details
In vitro research shows that ashwagandha extract induces CYP3A4 enzymes (111404).
|
Theoretically, taking ashwagandha with hepatotoxic drugs might increase the risk of liver damage.
Details
|
Theoretically, taking ashwagandha might decrease the effects of immunosuppressants.
Details
|
Ashwagandha might increase the effects and adverse effects of thyroid hormone.
Details
Concomitant use of ashwagandha with thyroid hormones may cause additive therapeutic and adverse effects. Preliminary clinical research and animal studies suggest that ashwagandha boosts thyroid hormone synthesis and secretion (19281,19282,97292). In one clinical study, ashwagandha increased triiodothyronine (T3) and thyroxine (T4) levels by 41.5% and 19.6%, respectively, and reduced serum TSH levels by 17.4% from baseline in adults with subclinical hypothyroidism (97292).
|
Theoretically, taking GABA with antihypertensive drugs might increase the risk of hypotension.
Details
Some clinical research shows that GABA can decrease blood pressure in patients with hypertension (19367).
|
Theoretically, GABA might have additive sedative effects when used in conjunction with CNS depressants. However, it is unclear if this concern is clinically relevant.
Details
Endogenous GABA has well-established relaxant effects (51152) and GABA(A) receptors have an established physiological role in sleep (51143). However, the effects of GABA supplements are unclear, as it is unknown whether exogenous GABA crosses the blood-brain barrier (51120,51153,90570). Although there have been limited reports of drowsiness or tiredness with GABA supplements (5115,19364), these effects have not been widely reported in clinical studies. Additionally, intravenous GABA 0.1-1 mg/kg has been shown to induce anxiety in a dose-dependent manner (5116).
|
Theoretically, melatonin may have anticoagulant effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
There are isolated case reports of minor bleeding and decreased prothrombin activity in people taking melatonin with warfarin (Coumadin) (63067). The mechanism, if any, of this interaction is unknown (9181). Taking melatonin orally seems to decrease coagulation activity within one hour of dosing in healthy men (62481).
|
Theoretically, melatonin may reduce the effects of anticonvulsants.
Some clinical research suggests that melatonin may increase the frequency of seizures in certain patients, particularly children with neurological impairment (8248,9744).
|
Theoretically, taking melatonin with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Some clinical research shows that melatonin reduces levels of fasting blood glucose and improves glycemic control (19034,19035,103490). However, other research suggests that melatonin might impair glucose utilization and increase insulin resistance (9713), while other research has found no effect on glucose levels (19036,104368). Until more is known, use melatonin cautiously in combination with antidiabetes drugs.
|
Theoretically, taking melatonin with antihypertensive drugs might increase the risk of hypotension or hypertension.
Details
Some clinical research suggests that taking melatonin decreases blood pressure in healthy adults (1724,62165,62187,63042). Also, melatonin seems to lower systolic and diastolic blood pressure in individuals with high blood pressure at nighttime or untreated essential hypertension (62359,62416,62441,62826). However, melatonin seems to worsen blood pressure in patients who are taking antihypertensive medications. Immediate-release melatonin 5 mg at night in combination with nifedipine GITS (Procardia XL) increases systolic blood pressure an average of 6.5 mmHg, diastolic blood pressure by an average of 4.9 mmHg, and heart rate by 3.9 bpm (6436). Also, results from animal research suggest that melatonin reduces the effectiveness of certain antihypertensive drugs, including methoxamine and clonidine (62432).
|
Theoretically, taking caffeine with melatonin might increase levels of melatonin.
Details
Some evidence suggests that caffeine consumption can decrease endogenous melatonin levels (8265,22303,37585), while other evidence suggests that caffeine increases endogenous melatonin levels (62328). When administered in combination with melatonin supplements, caffeine seems to increase melatonin effects and levels (62352,96315). The reason for this discrepancy is not completely clear. Part of the discrepancy may result from the fact that caffeine can inhibit melatonin synthesis as well as inhibit melatonin metabolism. By functioning as an adenosine receptor antagonist, caffeine may indirectly inhibit the synthesis of melatonin. Conversely, because melatonin and caffeine are both metabolized by cytochrome P450 1A2 (CYP1A2) enzyme, concomitant use of melatonin and caffeine may reduce the metabolism of melatonin, resulting in higher serum levels (22306,96315).
|
Theoretically, taking melatonin might increase the sedative effects of CNS depressants.
Details
Melatonin has sedative effects. Theoretically, concomitant use of melatonin with alcohol, benzodiazepines, or other sedative drugs might cause additive sedation (96315).
|
Theoretically, taking contraceptive drugs with melatonin might increase the effects and adverse effects of melatonin.
Details
Contraceptive drugs can increase the levels of endogenous melatonin (8265). Theoretically, these drugs may increase the effects and adverse effects of oral melatonin.
|
Theoretically, melatonin might increase levels of drugs metabolized by CYP1A2. Also, other CYP1A2 substrates might decrease the metabolism of melatonin, increasing melatonin levels.
Details
Melatonin is metabolized in the liver primarily by the CYP2C19 and CYP1A2 enzymes (62118,62405,96315). Theoretically, combined administration of melatonin with drugs metabolized by the CYP1A2 enzyme might reduce the metabolism of these drugs, resulting in increased serum levels. Conversely, some drugs metabolized by CYP1A2 may inhibit the metabolism of melatonin, resulting in increased serum levels of melatonin. Until more is known, use melatonin cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, melatonin might increase levels of drugs metabolized by CYP2C19. Also, other CYP2C19 substrates might decrease the metabolism of melatonin, increasing melatonin levels.
Details
Melatonin is metabolized in the liver primarily by the CYP2C19 and CYP1A2 enzymes (62118,62405). Theoretically, combined administration of melatonin with certain drugs metabolized by the CYP2C19 enzyme may reduce the metabolism of these drugs, resulting in increased serum levels. Conversely, some drugs metabolized by CYP2C19 may inhibit the metabolism of melatonin, resulting in increased serum levels of melatonin. Until more is known, use melatonin cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, melatonin might increase levels of drugs metabolized by CYP2D6.
Details
Laboratory research suggests that certain lots of melatonin inhibit CYP2D6 (96315). Theoretically, combined administration of melatonin with certain drugs metabolized by the CYP2D6 enzyme may reduce the metabolism of these drugs, resulting in increased serum levels. Until more is known, use melatonin cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, melatonin might increase levels of drugs metabolized by CYP3A4.
Details
Laboratory research shows that certain lots of melatonin inhibit CYP3A4 (96315). Theoretically, combined administration of melatonin with certain drugs metabolized by CYP3A4 may reduce the metabolism of these drugs, resulting in increased serum levels. Until more is known, use melatonin cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, taking flumazenil with melatonin might reduce the effects of melatonin.
Details
Animal research shows that flumazenil may inhibit the effect of melatonin (9703).
|
Theoretically, taking fluvoxamine with melatonin might increase levels of melatonin.
Details
Fluvoxamine can significantly increase melatonin levels. In some cases, fluvoxamine might increase bioavailability of exogenously administered melatonin by up to 20 times (5038,6499,8251). Some researchers think this might be a beneficial interaction and be potentially useful for cases of refractory insomnia (6499). However, this interaction might also cause unwanted excessive drowsiness and possibly other adverse effects. Fluvoxamine is known to increase endogenous melatonin secretion (6498,22313). It seems to increase serum levels of exogenously administered melatonin possibly by decreasing melatonin metabolism by inhibiting cytochrome P450 (CYP450) 1A2 and 2C19 or by inhibiting melatonin elimination. This effect has been found in healthy people taking fluvoxamine 50-75 mg and melatonin 5 mg (5038,6498,6499,8251).
|
Theoretically, melatonin might interfere with immunosuppressive therapy.
Details
Melatonin can stimulate immune function. Theoretically, melatonin might interfere with immunosuppressive therapy (7040).
|
Theoretically, taking melatonin with methamphetamine may increase the adverse effects of methamphetamine.
Details
Animal research suggests that melatonin exacerbates the adverse effects of methamphetamine, resulting in greater depression of tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH) activity, as well as a significant reduction in dopamine levels (22307). This has not been shown in humans.
|
Theoretically, taking melatonin with extended release nifedipine reduces the effects of nifedipine.
Details
Melatonin can decrease the effectiveness of extended release nifedipine (GITS). Immediate-release melatonin 5 mg at night in combination with nifedipine GITS 30-60 mg daily increases systolic and blood pressure by an average of 6.5 mmHg and 4.9 mmHg, respectively. Concomitant use with melatonin also increases heart rate by 3.9 bpm (6436). The mechanism of this interaction is not known.
|
Theoretically, taking melatonin with drugs that lower the seizure threshold might increase the risk of seizure activity.
Details
|
Theoretically, melatonin may have antiplatelet effects and may increase the risk of bleeding with warfarin.
Details
Three cases of increased prothrombin time have been reported for patients aged 48-72 years who took melatonin orally in combination with warfarin (9181). However, three cases of decreased prothrombin time have also been reported for patients aged 51-84 years who took melatonin orally in combination with warfarin (9181). Until more is known, use melatonin cautiously in patients taking warfarin.
|
Theanine might lower blood pressure, potentiating the effects of antihypertensive drugs.
Details
|
Theoretically, theanine might have additive sedative effects when used in conjunction with CNS depressants. However, it is unclear if this concern is clinically relevant.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product Relax-ALL Sleep. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, 5-HTP is generally well tolerated, short-term.
Most Common Adverse Effects:
Orally: Abdominal pain, anorexia, dizziness, diarrhea, drowsiness, fatigue, headache, insomnia, nausea, and vomiting. Severity appears to be dose-dependent.
Serious Adverse Effects (Rare):
Orally: Aggression, hallucinations, mania, severe gastrointestinal complaints.
Cardiovascular ...Orally, palpitations have been reported with 5-HTP (30076,30130,30167). Conversely, bradycardia has been reported in patients taking 5-HTP 0.4-2 grams daily in combination with carbidopa 100-300 mg daily (30132). In patients with schizophrenia, a combination of 5-HTP in doses up to 6 grams daily and carbidopa 150 mg daily was associated with diaphoresis and mild diastolic hypotension, especially when doses were increased at a rate faster than 200 mg per day (30183).
Dermatologic ...Orally, 5-HTP has been reported to cause urticaria, other allergic-type skin reactions, and flushing (2204,30000,30140). A scleroderma-like illness was reported in a 70-year-old man who had been taking 5-HTP 1400 mg daily and carbidopa 150 mg daily for 20 months. Elevated serotonin levels may be linked to this condition (1403).
Gastrointestinal ...Orally, 5-HTP has been reported to cause gastrointestinal side effects such as nausea, vomiting, abdominal or epigastric pain, heartburn, constipation, diarrhea, flatulence, anorexia, and taste alteration at any dose (2203,2204,30000,30112,30114,30125,30132,30139,30140)(30165,30183,104250). Severity may be dose-dependent and also related to how quickly doses are increased (30183). Some data suggests that these effects may diminish or disappear with continued use of 5-HTP (30132).
Hematologic ...Symptoms suggestive of eosinophilia myalgia syndrome (EMS) have been reported in some patients using 5-HTP (902,10084,30178,88174,90927). In one case, a woman was exposed to 5-HTP, tetrahydrobiopterin, carbidopa, and levodopa while administering them to her children for 2 years (90927). Her diagnosis was not confirmed, and the validity of the tests performed on the 5-HTP product has been questioned (88174). Other cases of eosinophilia or EMS in patients taking 5-HTP have been attributed to impurities that resemble previously identified contaminants found in L-tryptophan products (902,919,7067,10084). The L-tryptophan contaminants associated with EMS were linked to a specific manufacturer's production method that is not used in the preparation of 5-HTP (88174). Although 5-HTP supplements have been associated with EMS, it seems that this adverse effect is likely due to the presence of contaminants in the 5-HTP products, not 5-HTP itself.
Musculoskeletal ...Orally, rhabdomyolysis was noted in one patient with progressive myoclonus epilepsy who was treated with 5-HTP 300 mg daily for 21 days (30162).
Neurologic/CNS ...Orally, 5-HTP has been reported to cause drowsiness, dizziness, insomnia, fatigue, and headache (30076,30112,30132).
Psychiatric ...Orally, 5-HTP has been associated with euphoria, hypomania and mania, anxiety, insomnia, and aggressiveness (30076,30132,30158,88179). In patients with schizophrenia, a combination of high-dose 5-HTP, up to 6 grams daily, and carbidopa 150 mg daily was associated with transient increases in hallucinations, delusions, marked confusion, looseness of associations, flight of ideas, and a hyperkinetic syndrome consisting of restlessness, hand wringing, pacing, and an inability to sit quietly in a chair (30183).
General
...Orally, ashwagandha seems to be well-tolerated.
Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal upset, nausea, and vomiting. However, these adverse effects do not commonly occur with typical doses.
Serious Adverse Effects (Rare):
Orally: Some case reports raise concerns about acute hepatitis, acute liver failure, hepatic encephalopathy, the need for liver transplantation, and death due to liver failure with ashwagandha treatment.
Dermatologic ...Orally, dermatitis has been reported in three of 42 patients in a clinical trial (19276).
Endocrine ...A case report describes a 73-year-old female who had taken an ashwagandha root extract (unspecified dose) for 2 years to treat hypothyroidism which had been previously managed with levothyroxine. The patient was diagnosed with hyperthyroidism after presenting with supraventricular tachycardia, chest pain, tremor, dizziness, fatigue, irritability, hair thinning, and low thyroid stimulating hormone (TSH) levels. Hyperthyroidism resolved after discontinuing ashwagandha (108745). Additionally, an otherwise healthy adult who was taking ashwagandha extract orally for 2 months experienced clinical and laboratory-confirmed thyrotoxicosis. Thyrotoxicosis resolved 50 days after discontinuing ashwagandha, without other treatment (114111).
Gastrointestinal ...Orally, large doses may cause gastrointestinal upset, diarrhea, and vomiting secondary to irritation of the mucous and serous membranes (3710). When taken orally, nausea and abdominal pain (19276,110490,113609) and gastritis and flatulence (90651) have been reported.
Genitourinary ...In one case report, a 28-year-old male with a decrease in libido who was taking ashwagandha 5 grams daily over 10 days subsequently experienced burning, itching, and skin and mucous membrane discoloration of the penis, as well as an oval, dusky, eroded plaque (3 cm) with erythema on the glans penis and prepuce (32537).
Hepatic ...Orally, ashwagandha in doses of 154 mg to 20 grams daily has played a role in several case reports of cholestatic, hepatocellular, and mixed liver injuries. In most of these cases, other causes of liver injury were excluded, and liver failure did not occur. Symptoms included jaundice, pruritus, malaise, fatigue, lethargy, weight loss, nausea, diarrhea, abdominal pain and distension, stool discoloration, and dark urine. Symptom onset was typically 5-180 days from first intake, although in some cases onset occurred after more than 12 months of use (102686,107372,110490,110491,111533,111535,112111,113610,114113). Laboratory findings include elevated aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase, serum bilirubin, and international normalized ratio (INR) (112111,113610,114113). In most cases, liver enzymes normalized within 1-5 months after discontinuation of ashwagandha (102686,107372,110491,111535,112111,114113). However, treatment with corticosteroids, lactulose, ornithine, ursodeoxycholic acid, and plasmapheresis, among other interventions, was required in one case (111533). Rarely, use of oral ashwagandha has been reported to cause hepatic encephalopathy, liver failure requiring liver transplantation, and acute-on-chronic liver failure resulting in death (110490,113610).
Neurologic/CNS ...Orally, ashwagandha has been reported to cause drowsiness (110492,113609). Headache, neck pain, and blurry vision have been reported in a 47-year-old female taking ashwagandha, cannabis, and venlafaxine. Imaging over the course of multiple years and hospital admissions indicated numerous instances of intracranial hemorrhage and multifocal stenosis of intracranial arteries, likely secondary to reversible cerebral vasoconstriction syndrome (RCVS) (112113). It is unclear whether the RCVS and subsequent intracranial hemorrhages were precipitated by ashwagandha, cannabis, or venlafaxine.
General
...Orally, GABA seems to be generally well tolerated.
Sublingually, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Drowsiness, gastric upset, minor throat burning, muscle weakness, and nausea.
Cardiovascular ...Intravenously, GABA can cause dose-related increases in blood pressure and pulse (5116).
Gastrointestinal ...Orally, minor throat burning has been associated with GABA in one study (5115). In another study in which GABA was administered with phosphatidylserine, one patient experienced severe gastric distress, two patients reported moderate nausea, and one reported constipation (19364). Children with cerebral palsy taking GABA experienced nausea and decreased appetite (19362).
Genitourinary ...In one study, one patient treated with oral GABA and phosphatidylserine reported transient amenorrhea (19364).
Musculoskeletal ...Orally, minor adverse effects associated with GABA included muscle weakness (5115).
Neurologic/CNS ...Orally, GABA may cause drowsiness or tiredness (5115,19364). Four children with cerebral palsy taking GABA had convulsions, and an unspecified number experienced motor restlessness. However, causality of these adverse effects was not clear, and the dose of GABA was not specified (19362). Intravenously, GABA 50 mg has been associated with a "lack of alertness" in healthy female volunteers (51159).
Psychiatric ...Intravenously, GABA 0. 1-1.0 mg/kg has been shown to induce anxiety, dysphoria, and mood disturbances in a dose-dependent manner (5116).
Other ...In one study, patients taking GABA experienced a slight warming of the body (19370).
General
...Orally, melatonin is generally well tolerated.
Most Common Adverse Effects:
Orally: Dizziness, drowsiness, headache, and nausea.
Serious Adverse Effects (Rare):
Orally: There is concern that melatonin may increase the risk for seizure.
Cardiovascular ...Melatonin might increase levels of very low-density lipoprotein (VLDL) cholesterol and triglycerides (62176). Several rare or poorly described cases of abnormal heart rhythms, palpitations, fast heart rate, or chest pain have been reported. However, in these cases, the patients were taking other drugs that could account for the symptoms, and melatonin was not thought to be the cause (1079,9181,62776,62789,63067).
Dermatologic ...Papular skin rash and pruritus has been reported with melatonin use. However, the effect was generally mild and did not require cessation of melatonin treatment (62450,62754,109696), and had similar rates as placebo (96316). Cutaneous flushing has also been reported (62770,62914). Two cases of fixed drug eruption on the genitalia have been reported for patients who used oral melatonin (Nature's Bounty Natural melatonin) for preventing jet lag (88284).
Endocrine ...A case of gynecomastia (increased breast size) has been reported for a 56 year-old patient with amyotrophic lateral sclerosis (ALS) who used oral melatonin, long-term (89430). Also, reduced sperm concentration and sperm motility has been reported for two men who used oral melatonin 3 mg daily for 6 months. Improvement in sperm quality was observed for only one of the two men following melatonin cessation (62231).
Gastrointestinal ...Orally, melatonin may cause nausea (62384,62770), abdominal cramps, or mild abdominal pain (62450,62754,62914,96316), diarrhea (62804,62811,62914), constipation (96316), or decreased appetite (62345,62792). Often these symptoms occur during the first few days of treatment and subside after a few days (62804). In some cases, rates of symptoms are similar between melatonin and placebo (96316). Less often, melatonin has been reported to cause abnormal feces (62450), odd taste in the mouth (1070), or reflux esophagitis (1745) when used orally. A case of exacerbated symptoms of Crohn disease, including increased diarrhea and abdominal cramps, has been reported for a patient who took oral melatonin 3 mg at bedtime for 4 days. Symptoms resolved within 24 hours of melatonin treatment cessation (62218).
Genitourinary ...Orally, melatonin may increase enuresis in adults and children (58685,62450,62710,62770,62804,62804,62811). In perimenopausal adults, melatonin has caused a resumption of spotting or menstrual flow (11806). Decreased libido has been noted for one patient treated with melatonin 3 mg daily for 8 weeks (15216).
Hematologic ...A case of nose bleed has been reported with oral melatonin (62450). Some melatonin preparations contain contaminants that are associated with eosinophilia-myalgia syndrome (9715,9716).
Hepatic ...A case of autoimmune hepatitis has been reported for a patient who took melatonin orally to treat insomnia (63037).
Musculoskeletal ...Preliminary clinical evidence shows that a single dose of melatonin 3 mg may increase fall risk due to increased postural swaying while standing on one or both feet in healthy adults ages 60-71 years (97442). A single case of ataxia has been reported for an 81-year-old female who used melatonin for 4 days (9181). Weakened muscle power has been reported for two patients treated with melatonin 5 mg in the evening (62456). Some melatonin preparations contain contaminants that are associated with eosinophilia-myalgia syndrome (9715,9716).
Neurologic/CNS
...Orally, melatonin may cause migraine-like headache (1070,1077,15034,62384,62450,62710,62754,62804,62792,62914,88288,88293,88294,96318)(106297) or dizziness (62345,62384,62450,62456,62770,62784,62792,62804,62811,89510)(110297).
Often these symptoms occur during the first few days of treatment and subside after a few days (62804). Melatonin may also cause drowsiness or fatigue when taken orally (1077,8273,15216,62384,62456,62784,62804,62811,88288,89510,96314,96316,96318,97446)(106293,106297). These symptoms appear to be more common if melatonin is taken in the morning or at very high doses (greater than 50 mg) (8269,62874). A case of excessive drowsiness has been reported when melatonin was combined with citalopram, nortriptyline, and oxycodone. Sedation improved with discontinuation of melatonin (96315). Indiscriminate use of melatonin may cause irregular sleep-wake cycles to occur (62998). Less commonly, melatonin may also cause behavior worsening (62811), confusion or disorientation (63014,63067), nighttime awakening (62710,62811), mood swings or agitation (96318), stereotypy (96318), excitement before bedtime (62811), nightmares or more intense dreams (62401,62462,62780,62784,88283), feelings of a "rocking" sensation (62155), or reduced alertness when taken orally.
A case of generalized epilepsy has reportedly occurred after treatment with melatonin for 4 months (9708). Also, some case reports raise concerns about increased risk of seizure with melatonin treatment, but conflicting evidence suggests that melatonin may decrease the risk of seizures (1699,8248,9695,9697,9744,9746,62123,62256,62384,62754)(63070,63071,89431). One patient experienced hyponatremia with confusion and seizures after taking prolonged-release melatonin 2 mg. However, malnutrition and cannabis abuse were also thought to contribute to this reaction (96321).
Although there is concern that melatonin might affect cognitive function in healthy adults, research in humans suggests that oral or topical melatonin do not impact most measures of cognitive function (97442,97448).
Psychiatric ...Orally, melatonin may cause mood changes, including dysphoria (sadness) (1764), dips in mood (62345,62450,62792), nervousness (62784), or transient depression (1077). Delusions and hallucinations have also been reported in clinical research (62347). An isolated incident of aggressiveness was also noted in a child diagnosed with attention deficit-hyperactivity disorder (ADHD) who took melatonin in combination with methylphenidate (9980). Severe irritability has been reported in two children with autism spectrum disorder who had abruptly discontinued melatonin due to the completion of a clinical trial (106293).
General
...Orally, L-theanine seems to be well tolerated.
Most Common Adverse Effects:
Orally: Drowsiness, headaches.
Neurologic/CNS
...Orally, L-theanine may cause headaches (36439).
Patients have also reported drowsiness, increased duration of sleep, and increased dream activity after oral L-theanine use (96331).
A case of subtle facial tic starting within 4 days of taking L-theanine 400 mg daily has been reported for a pediatric patient. Although the tics reportedly ceased once theanine was discontinued, the child had exhibited tics in the past. Therefore, the adverse effect was not thought to be related to L-theanine (91744).