Ingredients | Amount Per Serving |
---|---|
(Magnesium Oxide)
(Magnesium (Form: as Magnesium Oxide) )
|
200 mg |
1500 mg | |
1200 mg | |
480 mg | |
(Pineapple)
|
100 mg |
Hydroxypropyl Methylcellulose, Hydroxypropyl Cellulose, Silica, Vegetable Stearate
Below is general information about the effectiveness of the known ingredients contained in the product Joint Health. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Joint Health. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Doses up to 240 mg daily have been used safely for up to a year (6252,6253,10622,11457,18281,18284,91104,91105,91106,91111)(96449,103298). Higher doses up to 3200 mg daily have been used safely, short-term (18283,110546). ...when used topically and appropriately. Bromelain has been used safely as a debriding agent for up to 4 hours (18275,91113,103297,108148,108149,113899). Additionally, a retrospective cohort study in critically ill patients with severe burns suggests that use of bromelain as a debriding agent for up to 4 hours is not associated with a greater risk of bacteremia (113899).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Chondroitin sulfate has been used safely in doses of up to 2000 mg daily for up to 6 years (1955,2533,13579,17732,22212,42339,42343,42348,42389,42396)(42398,42463,42477,42513,42520,42536,42541,89516,89558,89592)(89596,94360,94381,95788,95792). However, since chondroitin is often derived from bovine cartilage, historically, there was concern about contamination with diseased animal parts (1825). So far, there are no reports of disease transmission to humans due to use of contaminated chondroitin preparations. ...when used topically and appropriately as an ophthalmic viscosurgical device (OVD). Various products containing chondroitin sulfate and sodium hyaluronate have been granted approval by the US Food and Drug Administration (FDA) for use as an adjunct to cataract surgery (89436,89437).
POSSIBLY SAFE ...when used intramuscularly (10149,42397). ...when used topically as eye drops, short-term. Eye drops containing chondroitin sulfate with xanthan gum or glucosamine have been used with apparent safety four times daily for up to 3 months (89591,104443). ...when administered intravesically under the supervision of a physician (42338,42371,42373,42385,42387,42473,42511,42517,42519,109649).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Gelatin has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term . A specific type of gelatin from donkey hide, called colla corii asini, has been safely used in doses of 6-10 grams orally daily for 6-8 weeks. Higher doses of 15 grams daily have been associated with an increased risk of inflammatory adverse effects, including sore throat, swollen gums, local eczema, and oral ulcers (97634,107011). Since gelatin is often derived from bovine bones and skin, there is some concern about contamination with diseased animal parts (1825). So far, there are no reports of disease transmission to humans due to use of contaminated gelatin preparations.
CHILDREN: POSSIBLY SAFE
when gelatin tannate is used orally and appropriately in medicinal amounts, short-term.
In children under 15 kg or under 3 years of age, gelatin tannate has been used with apparent safety at doses up to 250 mg four times daily for up to 5 days. In children over 15 kg or over 3 years of age, it has been used with apparent safety at doses up to 500 mg four times daily for up to 5 days (103296). There is insufficient reliable information available about the safety of other forms of gelatin in children.
PREGNANCY: LIKELY SAFE
when used orally in the amounts commonly found in foods.
PREGNANCY: POSSIBLY SAFE
when a specific type of gelatin from donkey hide, called colla corii asini, is used orally in doses of 10 grams daily for 6 weeks.
Higher doses of 15 grams daily have been associated with an increased risk of inflammatory adverse effects, including sore throat, swollen gums, local eczema, and ulcers in the oral cavity (97634).
There is insufficient reliable information available about the safety of other types of gelatin when used during pregnancy in medicinal amounts.
LACTATION: LIKELY SAFE
when used orally in the amounts commonly found in foods.
There is insufficient reliable information available about the safety of using larger amounts of gelatin during lactation; avoid using.
LIKELY SAFE ...when glucosamine sulfate is used orally and appropriately. Glucosamine sulfate has been used safely in multiple clinical trials at a dose of 1000-1500 mg daily for 4 weeks to 3 years (2604,7026,8942,11340,12461)(14305,16717,89558,89567,94380,94382,95785).
POSSIBLY SAFE ...when glucosamine hydrochloride is used orally and appropriately. Glucosamine hydrochloride has been used with apparent safety at a dose of 1400-1600 mg daily for up to 2 years (4237,13579,14809,18344,42477,89516,89519,95784). Glucosamine hydrochloride 2 grams daily has also been used with apparent safety for up to 3 weeks (103281). ...when N-acetyl glucosamine is used orally and appropriately. N-acetyl glucosamine 100 mg daily has been used with apparent safety for up to 24 weeks (95795). ...when N-acetyl glucosamine is applied topically and appropriately. A 2% N-acetyl glucosamine cream has been safely used for up to 10 weeks (92721). ...when N-acetyl glucosamine is used rectally and appropriately. N-acetyl glucosamine 3-4 grams daily in 2 divided doses has been safely used (10234). ...when glucosamine sulfate is used intramuscularly and appropriately, short-term. Intramuscular glucosamine sulfate seems to be well tolerated when given twice weekly for up to 6 weeks (2605).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
Below is general information about the interactions of the known ingredients contained in the product Joint Health. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Bromelain may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
There is one case report of a patient experiencing minor bruising while taking bromelain with naproxen (14806). Bromelain is thought to have antiplatelet activity (10639,14806,18285,18286,37234). Whether this interaction is of concern with topical bromelain is unclear. Interference with coagulation of burn wounds has been reported in a patient receiving bromelain-based enzymatic debridement. However, observational research has found that topical bromelain debridement is not associated with increases or decreases in laboratory markers of coagulation when compared with surgical debridement (110547).
|
Theoretically, bromelain might increase levels of tetracycline antibiotics.
Details
Laboratory research suggests that bromelain might increase the absorption of tetracycline antibiotics. However, a study in healthy adults reported no difference in tetracycline plasma levels when a 500 mg dose was taken with or without bromelain 80 mg (14296).
|
Taking chondroitin in combination with glucosamine might increase the anticoagulant effects of warfarin. However, the effect of chondroitin alone is unclear.
Details
There have been multiple reports of increased international normalized ratio (INR) in patients taking warfarin with glucosamine, with or without chondroitin. The lack of reports with chondroitin alone seem to suggest that the interactions occurring in these reports may have been due to glucosamine. In two individual case reports, glucosamine/chondroitin combinations were associated with a significant increase in INR in patients previously stabilized on warfarin (11389,16130). Additionally, 20 voluntary case reports to the US Food & Drug Administration (FDA) have linked glucosamine plus chondroitin with increased INR, bruising, and bleeding in patients who were also taking warfarin (16130). There have also been 20 additional case reports to the World Health Organization (WHO) that link glucosamine alone, without chondroitin, to increased INR in patients taking warfarin (16131).
|
Acetaminophen might interfere with the activity of glucosamine sulfate by interacting with the sulfate portion.
Details
Anecdotal reports suggest that adding glucosamine to an acetaminophen regimen might decrease pain control in patients with osteoarthritis (14806). Some research suggests that the sulfate portion of glucosamine sulfate might contribute to its effect in osteoarthritis. Since acetaminophen metabolism requires sulfur and reduces serum sulfate concentrations, acetaminophen could theoretically interfere with the action of glucosamine sulfate. Conversely, the administration of sulfate could theoretically decrease the effectiveness of acetaminophen in sulfate-deficient people by increasing its clearance (10313).
|
Despite initial concerns, it is unlikely that glucosamine will interfere with the effects of antidiabetes drugs.
Details
In vitro and animal research has suggested that glucosamine might increase insulin resistance or decrease insulin production (371,372,3406,18342,18343). This has raised concerns that taking glucosamine might worsen diabetes and decrease the effectiveness of diabetes drugs. However, clinical research suggests that glucosamine does not have adverse effects on blood glucose or glycated hemoglobin (HbA1C) in healthy, obese, or type 2 diabetes patients (7026,7075,8942,10311,10317,15111).
|
Theoretically glucosamine may induce resistance to topoisomerase II inhibitors.
Details
In vitro research suggests that glucosamine might induce resistance to etoposide (VP16, VePesid) and doxorubicin (Adriamycin) by reducing inhibition of topoisomerase II, an enzyme required for DNA replication in tumor cells (7639). This effect has not been reported in humans.
|
Glucosamine might increase the anticoagulant effects of warfarin and increase the risk of bruising and bleeding.
Details
In two individual case reports, glucosamine/chondroitin combinations were associated with a significant increase in international normalized ratio (INR) in patients previously stabilized on warfarin (11389,16130). In one case, the increase in INR occurred only after tripling the dose of a glucosamine/chondroitin supplement from 500 mg/400 mg daily to 1500/1200 mg daily (16130). Additionally, 20 voluntary case reports to the U.S. Food & Drug Administration (FDA) have linked glucosamine plus chondroitin with increased INR, bruising, and bleeding in patients who were also taking warfarin (16130). There have also been 20 additional case reports to the World Health Organization (WHO) that link glucosamine alone to increased INR in patients taking warfarin (16131). The mechanism of this interaction is unclear. Glucosamine is a small component of heparin, but is not thought to have anticoagulant activity; however, animal research suggests that it might have antiplatelet activity (16131).
|
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Details
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
Details
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
Details
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Details
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Details
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
Details
|
Gabapentin absorption can be decreased by magnesium.
Details
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
Details
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Details
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Details
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Details
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
Details
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Details
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Details
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Details
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Below is general information about the adverse effects of the known ingredients contained in the product Joint Health. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, bromelain seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, flatulence, gastric upset, headache.
Topically: Pruritus, urticaria.
Dermatologic
...Topically, bromelain may cause dermal allergic reactions including urticaria, pruritus, and skin swelling (9184).
Redness, swelling, burning, pain at the application site, and cellulitis have also been reported rarely (108148,113513). In one case, a fixed drug eruption with pruritis near the groin was reported in a 33-year-old male taking bromelain 50 mg orally daily for 10 days. After discontinuation of bromelain and treatment with topical corticosteroid, the lesion resolved. Upon re-challenge with bromelain, the lesion reappeared in the same area (103300).
In another case report, a 61-year-old male with a history of chronic lower leg ulceration secondary to chronic venous hypertension and recurrent deep vein thrombosis on rivaroxaban presented with a deep-dermal burn on his lower calf. Bromelain-based topical enzymatic debridement agent Nexobrid 2 grams was applied to the burn site. Thirty minutes later, the patient experienced two instances of hemorrhage at the site of debridement. The patient was stabilized and treated with fluids, packed red cells, and tranexamic acid, and then the Nexobrid was removed (111656). Caution should be used in patients with underlying coagulopathies.
Gastrointestinal ...Orally, bromelain may cause gastrointestinal disturbances, including diarrhea, nausea, vomiting, flatulence, and abdominal pain (9184,18274,18282,96216,113513).
Immunologic
...Immunoglobulin E (IgE)-mediated allergic reactions to bromelain may occur (9184).
If inhaled, bromelain may cause sensitization and allergic reactions such as asthma (37199,37215,37233). In case reports of occupational inhalation of bromelain, additional allergic symptoms included difficulty swallowing, throat itching, eye irritation, and rhinitis (37214).
General
...Orally and topically, chondroitin sulfate is generally well tolerated.
Intramuscular and ophthalmic use also seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, constipation, diarrhea, heartburn, nausea.
Serious Adverse Effects (Rare):
Orally: There have been rare reports of hepatotoxicity.
Cardiovascular ...One case of congestive heart failure and another case of myocardial infarction has been possibly attributed to use of glucosamine hydrochloride and chondroitin sulfate (13579,42477). Also, a case of mesenteric occlusion in one patient was considered possibly related to treatment with chondroitin sulfate and glucosamine (89520).
Dermatologic ...Orally, chondroitin sulfate has been associated with skin symptoms, such as eyelid edema, lower limb edema, alopecia, and skin rash (42513). Combinations of chondroitin sulfate along with glucosamine hydrochloride may also be associated with rash, water retention around eyes and scars, and hives on face, chest, torso, and legs when taken orally (42436,110628). A case of photosensitization that was reproducible with rechallenge has been reported following treatment with oral glucosamine-chondroitin products. However, it is not clear if this effect was due to glucosamine, chondroitin sulfate, or contaminants in the product (10408). A case of rash following treatment with intravesical chondroitin sulfate has been reported to be possibly related to the product (42385).
Gastrointestinal ...Orally, chondroitin might cause nausea, bloating, abdominal pain, diarrhea, constipation, vomiting, dyspepsia, and epigastric burning (42396,42436,42541,89561,110628,111647).
Genitourinary ...Intravesical chondroitin sulfate has been associated with cases of vulvar burning, vaginitis, urinary tract infection (UTI), dysuria, pelvic pain, and other bladder symptoms, such as increased frequency, urgency, or incontinence. However, these effects might be due to catheterization rather than chondroitin sulfate (42385,42387,42473).
Hematologic ...Concern has been expressed about possible anticoagulant activity of oral chondroitin sulfate. However, hematological changes have not occurred in patients taking chondroitin sulfate in clinical trials (760).
Hepatic ...Although relatively uncommon, combinations of glucosamine and chondroitin sulfate have been associated with acute liver injury that mimics autoimmune hepatitis. Two cases of elevated aminotransferase levels have been reported for patients taking glucosamine (form unspecified) and chondroitin sulfate at recommended doses. Aminotransferase levels, which were increased by four- to seven-fold, returned to normal following discontinuation of treatment (89515). Another case of abdominal pain, jaundice, fatigue, and elevated liver enzymes has been reported for a patient who used chondroitin sulfate (Condrosulf) for 2 years followed by a combination of glucosamine sulfate and chondroitin sulfate (Vita Mobility Complex) for 8 weeks. The patient required maintenance treatment with azathioprine to remain in remission (89518). A case of acute cholestatic hepatitis due to Glucosamine Forte, which contains glucosamine hydrochloride, chondroitin sulfate, Devil's claw, and shark cartilage, has been reported (89522). It is unclear whether these adverse events were related to chondroitin sulfate, other ingredients, or the combination.
Musculoskeletal ...Orally, chondroitin has been associated with musculoskeletal and connective-tissue events and disorders (13579,42520,95516).
Neurologic/CNS
...Rare cases of headache have been reported following treatment with products containing a combination of oral chondroitin sulfate and glucosamine hydrochloride or glucosamine sulfate (42436,89561).
It is unclear if this effect was due to chondroitin, glucosamine, or the combination.
Patients should adhere to product directions when using chondroitin sulfate products that contain manganese. When taken at doses slightly higher than the recommended dose, these products can sometimes supply greater than the tolerable upper limit (UL) for manganese of 11 mg per day. Ingestion of more than 11 mg per day of manganese might cause significant central nervous system toxicity (7135).
Ocular/Otic ...A case of bilateral pinna chondritis (inflammation of the cartilage of the external ear) has been reported for a patient who received supplements containing glucosamine and chondroitin sulfate (42503).
Pulmonary/Respiratory ...A case of asthma exacerbation has been reported occurred following use of an oral glucosamine and chondroitin sulfate combination product (10002).
General
...Orally, gelatin seems to be well tolerated.
Most Common Adverse Effects:
Oral: Belching, bloating, and dyspepsia.
Serious Adverse Effects (Rare):
Injection: IgE-mediated allergic reactions, Kounis syndrome.
Gastrointestinal ...Orally, gelatin can cause unpleasant taste, sensation of heaviness in the stomach, bloating, dyspepsia, and belching (7704).
Immunologic
...Gelatin can cause allergic reactions.
Gelatin in foods can cause initial sensitization (7703). Gelatin-containing medicines including oral medications, suppositories, vaccines, and injectable products can cause IgE-mediated allergic reactions, including urticaria, angioedema, wheezing, hypotension, and anaphylaxis (7708,7709,7710,97633,111345). In the US, gelatin is used as a stabilizer in some vaccines such as measles, mumps, and rubella (MMR), and diphtheria, pertussis, tetanus (DPT) (7711). In one case report, a 73-year-old male experienced anaphylactic symptoms within 10 minutes of receiving gelatin lysate as a plasma expander during a routine surgery. The patient proceeded to develop heart, respiratory, and kidney failure and died 76 days after receiving the gelatin infusion (97633). At least 12 case reports describe life-threatening anaphylaxis after administration of gelatin-containing hemostatic agents during surgery. In these cases, hypotension, tachycardia, and increased airway pressure occurred shortly after injection of the agent into the pedicle tract (111345).
There are at least two cases of Kounis syndrome, an acute coronary syndrome related to a massive mast cell activation, after the use of a gelatin infusion during general anesthesia. In one case, immediate symptoms included bradycardia and hypotension, followed by myocardial ischemia and coronary vasospasm (97631).
Other ...Since gelatin is sometimes produced from bovine bones and skin, there is some concern about the potential risk of contamination with diseased animals and transmission of bovine spongiform encephalopathy (BSE, mad cow disease) and other diseases (1825). So far, there are no reports of BSE or other disease transmission to humans from gelatin products.
General
...Orally, all forms of glucosamine seem to be well tolerated.
Topically and rectally, N-acetyl glucosamine also seems to be well tolerated. Intramuscularly, glucosamine sulfate seems to be well tolerated. However, a thorough evaluation of safety outcomes has not been conducted for non-oral routes of administration.
Most Common Adverse Effects:
Orally: Bloating, constipation, cramps, diarrhea, heartburn, nausea.
Serious Adverse Effects (Rare):
Orally: There have been rare reports of severe allergic reactions and hepatotoxicity.
Cardiovascular
...One case of mesenteric occlusion in a clinical trial was considered possibly related to use of oral glucosamine hydrochloride and chondroitin sulfate (89520).
Some observational research has found that glucosamine use in patients with osteoarthritis is associated with a higher risk of cardiovascular disease (CVD) events when compared with non-use (109642). However, glucosamine users tended to be older, have multiple comorbidities, and be on antihyperlipidemic or antiplatelet therapy. Furthermore, other observational research in healthy adults has found that glucosamine use is associated with a reduced risk of fatal and non-fatal CVD events (99682). Higher quality, prospective research is needed to clarify the relationship, if any, between glucosamine and CVD risk.
Dermatologic ...Orally, glucosamine might cause skin reactions, including itching, rash, and erythema (2608,20084,89567,110628,113636). Also, fingernail and toenail toughening, with an increased rate of growth, has been reported (89572). Topically, N-acetyl glucosamine 2% with niacinamide 4% cream might cause rare skin reactions (92721). Photosensitization that was reproducible with re-challenge was reported in a case report of an individual using glucosamine (form unknown) and chondroitin (10408).
Endocrine ...Orally, glucosamine does not seem to impact blood glucose. Preliminary research and anecdotal reports have found that various forms of glucosamine might increase insulin resistance or decrease insulin production, increasing fasting plasma glucose levels (22,371,372,1203,3406,5059,7637,14810). This has raised concerns that taking glucosamine sulfate might worsen diabetes and decrease the effectiveness of diabetes drugs. However, clinical research suggests that various forms of glucosamine do not have adverse effects on blood glucose or glycated hemoglobin (HbA1C) in healthy, obese, patients with type 2 diabetes or impaired glucose tolerance (7026,7075,7638,8942,10311,10317,12107,14808,15111,89563).
Gastrointestinal ...Orally, glucosamine has been associated with gastrointestinal problems, including epigastric and abdominal pain, cramps, heartburn, diarrhea, nausea, dyspepsia, vomiting, constipation, and flatulence (1520,2608,16717,20084,20104,20105,89561,89562,89567,89568)(108897,110628,111647,113636). In older persons, use of glucosamine sulfate is associated with oral dryness (89564). In a clinical trial, a case of Helicobacter pylori gastritis was considered probably related to the use of glucosamine hydrochloride (89516).
Hepatic ...Although relatively uncommon, combinations of glucosamine and chondroitin sulfate have been associated with acute liver injury that mimics autoimmune hepatitis. Of 151 patients at an outpatient clinic for liver diseases, 23 acknowledged use of products containing glucosamine (form unspecified) and/or chondroitin. However, only 2 cases had an apparent relationship between transaminase elevation and the use of recommended doses of glucosamine and chondroitin sulfate. Aminotransferase levels, which were increased by four- to seven-fold, returned to normal following discontinuation of treatment (89515). In another case, a 65-year-old male presented to the hospital with signs and symptoms of drug-induced autoimmune hepatitis. The patient had used Condrosulf, containing chondroitin sulfate, for two years, followed by Vita Mobility Complex, containing chondroitin sulfate and glucosamine sulfate, for 8 weeks. The patient required maintenance treatment with azathioprine to remain in remission (89518). A case of acute cholestatic hepatitis due to Glucosamine Forte, which contains glucosamine hydrochloride, chondroitin sulfate, Devil's claw, and shark cartilage, has been reported (89522). It is unclear whether these adverse events were related to glucosamine, other ingredients, or the combination.
Immunologic ...There is some concern that glucosamine products might cause allergic reactions in sensitive individuals. One review of glucosamine-related adverse events in Australia found that 72% of all reports involved hypersensitivity reactions. Of these reactions, 35% were mild, including pruritis, urticaria, and lip edema, 49% were moderate, including dyspnea, and 16% were severe, including gait disturbance, somnolence, and hypotension. Anaphylaxis was reported in 1.5% of cases (102115). Also, in one clinical trial, a single patient developed allergic dermatitis considered to be likely due to glucosamine hydrochloride (89516). Glucosamine is derived from the exoskeletons of shrimp, lobster, and crabs. However, it is unclear if these adverse reactions were due to a shellfish sensitivity or general atopy. Additionally, shellfish allergies are caused by IgE antibodies to antigens in the meat of shellfish, not to antigens in the exoskeleton. Regardless, it is possible that some glucosamine products might be contaminated by this allergen during production (102115).
Neurologic/CNS ...Orally, glucosamine has been reported to cause drowsiness and headache (2608,89561,113636). Glucosamine plus chondroitin combination products that also contain manganese (e.g., CosaminDS) should always be taken according to product directions. When taken at doses slightly higher than the recommended dose, these products can sometimes supply greater than the tolerable upper limit (UL) for manganese which is 11 mg/day. Ingestion of more than 11 mg/day of manganese might cause significant central nervous system toxicity (7135).
Ocular/Otic ...In older persons, use of glucosamine sulfate has been associated with ocular dryness (89564). Increased intraocular pressure has occurred with glucosamine sulfate supplementation (89573,112460). Data from the FDA MedWatch adverse event reporting system shows that 0.21% of subjects taking glucosamine reported glaucoma, which is significantly greater than the 0.08% of subjects who reported glaucoma while using any other drug (112460).
Pulmonary/Respiratory ...Cases of asthma exacerbations associated with the use of glucosamine (form unknown)-chondroitin products have been reported (10002).
Renal ...Anecdotal reports have associated glucosamine with nephrotoxicity signals such as modestly elevated creatine phosphokinase and 1+ to 2+ proteinuria, but changes in kidney function have not been reported in long-term studies (7026,8942,10408,10409). It was also noted that effects may have been due to other concurrent medications or impurities in glucosamine-chondroitin products. Cases of acute interstitial nephritis induced by glucosamine (form unknown) have also been reported (89523).
Other ...There has been concern that glucosamine might increase the risk of metabolic disturbances resulting in increased cholesterol levels and blood pressure. However, glucosamine does not appear to increase the risk of these adverse effects. Taking glucosamine sulfate for up to 3 years does not significantly increase blood glucose or lipid levels, or cause any other disturbances in metabolism (7026,7075,8942,10311,10317).
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466). Antenatal magnesium sulfate may also cause nausea and vomiting (60915). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).