Ingredients | Amount Per Serving |
---|---|
(Zn)
(Zinc Monomethionine)
|
15 mg |
(Ashwagandha Root Extract)
|
600 mg |
(seed)
(Saponins)
(50% Saponins)
|
500 mg |
(DIM)
|
250 mg |
(Black Pepper Fruit Extract)
(95% Piperine)
|
5 mg |
(5%)
|
5 mg |
Cellulose, Magnesium Stearate (Alt. Name: Mg Stearate)
Below is general information about the effectiveness of the known ingredients contained in the product Triumph. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Triumph. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Ashwagandha has been used with apparent safety in doses of up to 1250 mg daily for up to 6 months (3710,11301,19271,90649,90652,90653,97292,101816,102682,102683) (102684,102685,102687,103476,105824,109586,109588,109589,109590). ...when used topically. Ashwagandha lotion has been used with apparent safety in concentrations up to 8% for up to 2 months (111538).
PREGNANCY: LIKELY UNSAFE
when used orally.
Ashwagandha has abortifacient effects (12).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Black pepper has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when black pepper oil is applied topically. Black pepper oil is nonirritating to the skin and is generally well tolerated (11). ...when black pepper oil is inhaled through the nose or as a vapor through the mouth, short-term. Black pepper oil as a vapor or as an olfactory stimulant has been used with apparent safety in clinical studies for up to 3 days and 30 days, respectively (29159,29160,29161,90502). There is insufficient reliable information available about the safety of black pepper when used orally in medicinal amounts.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
CHILDREN: POSSIBLY UNSAFE
when used orally in large amounts.
Fatal cases of pepper aspiration have been reported in some patients (5619,5620). There is insufficient reliable information available about the safety of topical pepper oil when used in children.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
PREGNANCY: LIKELY UNSAFE
when used orally in large amounts.
Black pepper might have abortifacient effects (11,19); contraindicated. There is insufficient reliable information available about the safety of topical pepper when used during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
There is insufficient reliable information available about the safety of black pepper when used in medicinal amounts during breast-feeding.
LIKELY SAFE ...when used orally and appropriately. Boron is safe in amounts that do not exceed the tolerable upper intake level (UL) 20 mg daily (7135). ...when used vaginally. Boric acid, the most common form of boron, has been safely used for up to six months (15443,15444,15445,15446,15458,15449,15451,15453,15454). ...when used topically. Boron, in the form of sodium pentaborate pentahydrate 3% gel, has been applied to the skin with apparent safety up to four times daily for up to 5 weeks (95660,109557).
POSSIBLY UNSAFE ...when used orally in doses exceeding the UL of 20 mg daily. Higher doses might adversely affect the testes and male fertility (7135). Poisoning has occurred after ingestion of boron 2.12 grams daily for 3-4 weeks (17). Death has occurred after ingesting a single dose of 30 grams (36848,36863).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Boron is safe in amounts that do not exceed the tolerable upper intake level (UL). The UL by age is 3 mg daily at 1-3 years, 6 mg daily at 4-8 years, 11 mg daily at 9-13 years, and 17 mg daily at 14 years or older (7135). The UL for infants has not been determined (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses exceeding the age-based UL (7135).
...when applied topically in large quantities. Infant deaths have occurred after the use of topical boric acid powder to prevent diaper rash (36873,36874).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Boron is safe in amounts that do not exceed the UL during pregnancy or lactation, which is 20 mg daily in those 19-50 years of age or 17 mg daily for those 14-18 years of age (7135).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher doses might impair growth and cause adverse effects in the developing fetus (7135,102058). ...when used vaginally. Intravaginal boric acid has been associated with a 2.7- to 2.8-fold increased risk of birth defects when used during the first 4 months of pregnancy (15443,15645).
LIKELY SAFE ...when used orally in amounts commonly found in foods. The typical diet supplies 2-24 mg of diindolylmethane daily (7170,7176,7664).
POSSIBLY SAFE ...when used orally and appropriately in medicinal doses. Diindolylmethane has been used with apparent safety at a dose of 45 mg daily for up to 6 months or at a higher dose of 100-140 mg daily for up to 3 months (47709,47729,93836,103830).
POSSIBLY UNSAFE ...when used orally in doses of 600 mg daily. In one clinical study, two cases of grade 3 asymptomatic hyponatremia were associated with taking diindolylmethane 600 mg daily (47729).
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods.
The typical diet supplies 2-24 mg of diindolylmethane daily (7170,7176,7664).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
The typical diet supplies 2-24 mg of diindolylmethane daily (7170,7176,7664). There is insufficient reliable information available about the safety of diindolylmethane when used in amounts greater than those found in foods during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Fenugreek has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the seed is used orally in medicinal amounts. Fenugreek seed powder 5-10 grams daily has been used with apparent safety for up to 3 years. Fenugreek seed extract 1 gram daily has been used with apparent safety for up to 3 months (7389,9783,18359,18362,49868,90112,90113,90117,93419,93420)(93421,93422,93423,96065,103285,108704).
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of fenugreek when used in larger amounts. Unusual body and urine odor has been reported after consumption of fenugreek tea. Although the odor appears to be harmless, it may be misdiagnosed as maple syrup urine disease (9782,96068).
PREGNANCY: LIKELY UNSAFE
when used orally in amounts greater than those found in food.
Fenugreek has potential oxytoxic and uterine stimulant activity (12531). There are case reports of congenital malformations, including hydrocephalus, anencephaly, cleft palate, and spina bifida, after consumption of fenugreek seeds during pregnancy (96068). Consumption of fenugreek immediately prior to delivery may cause the neonate to have unusual body odor. Although this does not appear to cause long-term sequelae, it may be misdiagnosed as maple syrup urine disease (9781,96068).
LACTATION: POSSIBLY SAFE
when used orally to stimulate lactation, short-term.
Although most available clinical studies lack safety testing in the lactating parent or infant (12535,22569,22570), some evidence suggests that taking fenugreek 1725 mg three times daily orally for 21 days does not cause negative side effects in the infant (90115).
LIKELY SAFE ...when used orally and appropriately. Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 40 mg daily (7135). ...when used topically and appropriately (2688,6538,6539,7135,8623,11051,111291).
POSSIBLY SAFE ...when used orally and appropriately in doses higher than the tolerable upper intake level (UL). Because the UL of zinc is based on regular daily intake, short-term excursions above 40 mg daily are not likely to be harmful. In fact, there is some evidence that doses of elemental zinc as high as 80 mg daily in combination with copper 2 mg can be used safely for approximately 6 years without significant adverse effects (7303,8622,92212). However, there is some concern that doses higher than the UL of 40 mg daily might decrease copper absorption and result in anemia (7135).
POSSIBLY UNSAFE ...when used intranasally. Case reports and animal research suggest that intranasal zinc might cause permanent anosmia or loss of sense of smell (11155,11156,11703,11704,11705,11706,11707,16800,16801,17083). Several hundred reports of anosmia have been submitted to the US Food and Drug Administration (FDA) and the manufacturer of some intranasal zinc products (Zicam) (16800,16801). Advise patients not to use intranasal zinc products.
LIKELY UNSAFE ...when taken orally in excessive amounts. Ingestion of 10-30 grams of zinc sulfate can be lethal in adults (7135). Chronic intake of 450-1600 mg daily can cause multiple forms of anemia, copper deficiency, and myeloneuropathies (7135,17092,17093,112473). This has been reported with use of zinc-containing denture adhesives in amounts exceeding the labeled directions, such as several times a day for several years (17092,17093). Advise patients to follow the label directions on denture adhesives that contain zinc.
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135).
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL). The UL for children is based on age: 4 mg daily for 0-6 months, 5 mg daily for 7-12 months, 7 mg daily for 1-3 years, 12 mg daily for 4-8 years, 23 mg daily for 9-13 years, and 34 mg daily for 14-18 years (7135,97140).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Taking amounts greater than the UL can cause sideroblastic anemia and copper deficiency (7135). ...when used topically on damaged skin. An infant treated with 10% zinc oxide ointment for severe diaper rash with perianal erosions developed hyperzincemia. Absorption seemed to occur mainly via the erosions; plasma levels dropped after the erosions healed despite continued use of the ointment (106905).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during pregnancy in those 14-18 years of age and 40 mg daily in those 19-50 years of age (7135).
PREGNANCY: LIKELY UNSAFE
when used orally in doses exceeding the UL (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during lactation in those 14-18 years of age, and 40 mg daily for those 19-50 years of age (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher doses can cause zinc-induced copper deficiency in nursing infants (7135).
Below is general information about the interactions of the known ingredients contained in the product Triumph. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking ashwagandha with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking ashwagandha with antihypertensive drugs might increase the risk of hypotension.
Details
Animal research suggests that ashwagandha might lower systolic and diastolic blood pressure (19279). Theoretically, ashwagandha might have additive effects when used with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, taking ashwagandha might increase the sedative effects of benzodiazepines.
Details
There is preliminary evidence that ashwagandha might have an additive effect with diazepam (Valium) and clonazepam (Klonopin) (3710). This may also occur with other benzodiazepines.
|
Theoretically, taking ashwagandha might increase the sedative effects of CNS depressants.
Details
Ashwagandha seems to have sedative effects. Theoretically, this may potentiate the effects of barbiturates, other sedatives, and anxiolytics (3710).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research shows that ashwagandha extract induces CYP1A2 enzymes (111404).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP3A4 substrates.
Details
In vitro research shows that ashwagandha extract induces CYP3A4 enzymes (111404).
|
Theoretically, taking ashwagandha with hepatotoxic drugs might increase the risk of liver damage.
Details
|
Theoretically, taking ashwagandha might decrease the effects of immunosuppressants.
Details
|
Ashwagandha might increase the effects and adverse effects of thyroid hormone.
Details
Concomitant use of ashwagandha with thyroid hormones may cause additive therapeutic and adverse effects. Preliminary clinical research and animal studies suggest that ashwagandha boosts thyroid hormone synthesis and secretion (19281,19282,97292). In one clinical study, ashwagandha increased triiodothyronine (T3) and thyroxine (T4) levels by 41.5% and 19.6%, respectively, and reduced serum TSH levels by 17.4% from baseline in adults with subclinical hypothyroidism (97292).
|
Theoretically, black pepper might increase the effects and side effects of amoxicillin.
Details
Animal research shows that taking piperine, a constituent of black pepper, with amoxicillin increases plasma levels of amoxicillin (29269). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of bleeding when taken with antiplatelet or anticoagulant drugs.
Details
In vitro research shows that piperine, a constituent of black pepper, seems to inhibit platelet aggregation (29206). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
Animal research shows that piperine, a constituent of black pepper, can reduce blood glucose levels (29225). Monitor blood glucose levels closely. Dose adjustments might be necessary.
|
Theoretically, black pepper might increase blood levels of atorvastatin.
Details
Animal research shows that taking piperine, a constituent of black pepper, 35 mg/kg can increase the maximum serum concentration of atorvastatin three-fold (104188). This has not been reported in humans.
|
Theoretically, black pepper might increase blood levels of carbamazepine, potentially increasing the effects and side effects of carbamazepine.
Details
One clinical study in patients taking carbamazepine 300 mg or 500 mg twice daily shows that taking a single 20 mg dose of purified piperine, a constituent of black pepper, increases carbamazepine levels. Piperine may increase carbamazepine absorption by increasing blood flow to the GI tract, increasing the surface area of the small intestine, or inhibiting cytochrome P450 3A4 (CYP3A4) in the gut wall. Absorption was significantly increased by 7-10 mcg/mL/hour. The time to eliminate carbamazepine was also increased by 4-8 hours. Although carbamazepine levels were increased, this did not appear to increase side effects (16833). In vitro research also shows that piperine can increase carbamazepine levels by 11% in a time-dependent manner (103819).
|
Theoretically, black pepper might increase the effects and side effects of cyclosporine.
Details
In vitro research shows that piperine, a constituent of black pepper, increases the bioavailability of cyclosporine (29282). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP1A1.
Details
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP1A1 (29213). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2B1.
Details
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP2B1 (29332). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2D6.
Details
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP3A4.
Details
|
Theoretically, black pepper might increase blood levels of lithium due to its diuretic effects. The dose of lithium might need to be reduced.
Details
Black pepper is thought to have diuretic properties (11).
|
Black pepper might increase blood levels of nevirapine.
Details
Clinical research shows that piperine, a constituent of black pepper, increases the plasma concentration of nevirapine. However, no adverse effects were observed in this study (29209).
|
Theoretically, black pepper might increase levels of P-glycoprotein substrates.
Details
|
Theoretically, black pepper might increase the sedative effects of pentobarbital.
Details
Animal research shows that piperine, a constituent of black pepper, increases pentobarbital-induced sleeping time (29214).
|
Black pepper might increase blood levels of phenytoin.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption, slow elimination, and increase levels of phenytoin (537,14442). Taking a single dose of black pepper 1 gram along with phenytoin seems to double the serum concentration of phenytoin (14375). Consuming a soup with black pepper providing piperine 44 mg/200 mL of soup along with phenytoin also seems to increase phenytoin levels when compared with consuming the same soup without black pepper (14442).
|
Black pepper might increase blood levels of propranolol.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of propranolol (538).
|
Black pepper might increase blood levels of rifampin.
Details
|
Black pepper might increase blood levels of theophylline.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of theophylline (538).
|
Theoretically, diindolylmethane might lower serum levels of CYP1A2 substrates.
Details
|
Theoretically, diindolylmethane might increase the risk of hyponatremia if used with sodium-depleting diuretics.
Details
Large doses of diindolylmethane (600 mg daily) have been associated with two cases of asymptomatic hyponatremia in clinical research (47729).
|
Theoretically, diindolylmethane might increase or decrease the effects of estrogens.
Details
Diindolylmethane might have mild estrogenic or antiestrogenic effects (7664). Theoretically, large amounts of diindolylmethane might interfere with hormone replacement therapy.
|
Theoretically, fenugreek might have additive effects when used with anticoagulant or antiplatelet drugs.
Details
Some of the constituents in fenugreek have antiplatelet effects in animal and in vitro research. However, common fenugreek products might not contain sufficient concentrations of these constituents for clinical effects. A clinical study in patients with coronary artery disease or diabetes shows that taking fenugreek seed powder 2.5 grams twice daily for 3 months does not affect platelet aggregation, fibrinolytic activity, or fibrinogen levels (5191,7389,49643).
|
Theoretically, fenugreek seed might have additive hypoglycemic effects when used with antidiabetes drugs.
Details
|
Theoretically, fenugreek seed might alter the clinical effects of clopidogrel by inhibiting its conversion to the active form.
Details
Animal research shows that fenugreek seed 200 mg/kg daily for 14 days increases the maximum serum concentration of clopidogrel by 21%. It is unclear how this affects the pharmacokinetics of the active metabolite of clopidogrel; however, this study found that concomitant use of fenugreek seed and clopidogrel prolonged bleeding time by an additional 11% (108701).
|
Theoretically, fenugreek seed might have additive hypotensive effects when used with metoprolol.
Details
Animal research shows that fenugreek seed 300 mg/kg daily for 2 weeks decreases systolic and diastolic blood pressure by 9% and 11%, respectively, when administered alone, and by 15% and 22%, respectively, when given with metoprolol 10 mg/kg (108703).
|
Theoretically, fenugreek might decrease plasma levels of phenytoin.
Details
Animal research shows that taking fenugreek seeds for 1 week decreases maximum concentrations and the area under the curve of a single dose of phenytoin by 44% and 72%, respectively. This seems to be related to increased clearance (110905). So far, this interaction has not been reported in humans.
|
Theoretically, concurrent use of sildenafil and fenugreek might reduce levels and therapeutic effects of sildenafil.
Details
Animal research shows that taking fenugreek seeds for 1 week reduces maximum concentrations and the area under the curve of a single dose of sildenafil by 27% and 48%, respectively (110898). So far, this interaction has not been reported in humans.
|
Theoretically, fenugreek may reduce the levels and clinical effects of theophylline.
Details
Animal research shows that fenugreek 50 grams daily for 7 days reduces the maximum serum concentration (Cmax) of theophylline by 28% and the area under the plasma drug concentration-time curve (AUC) by 22% (90118).
|
Theoretically, fenugreek might have additive effects with warfarin and increase the international normalized ratio (INR).
Details
|
Amiloride can modestly reduce zinc excretion and increase zinc levels.
Details
Clinical research shows that amiloride can reduce urinary zinc excretion, especially at doses of 10 mg per day or more. This zinc-sparing effect can help to counteract zinc losses caused by thiazide diuretics, but it is unlikely to cause zinc toxicity at usual amiloride doses (830,11626,11627,11634). The other potassium-sparing diuretics, spironolactone (Aldactone) and triamterene (Dyrenium), do not seem to have a zinc-sparing effect.
|
Zinc modestly reduces levels of atazanavir, although this effect does not seem to be clinically significant.
Details
Clinical research shows that zinc might decrease serum atazanavir levels by chelating with atazanavir in the gut and preventing its absorption (93578). Although a single dose of zinc sulfate (Solvazinc tablets) 125 mg orally does not affect atazanavir concentrations in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate 125 mg daily for 2 weeks reduces plasma levels of atazanavir by about 22% in these patients. However, despite this decrease, atazanavir levels still remain at high enough concentrations for the prevention of HIV virus replication (90216).
|
Zinc might decrease cephalexin levels by chelating with cephalexin in the gut and preventing its absorption.
Details
A pharmacokinetic study shows that zinc sulfate 250 mg taken concomitantly with cephalexin 500 mg decreases peak levels of cephalexin by 31% and reduces the exposure to cephalexin by 27%. Also, taking zinc sulfate 3 hours before cephalexin decreases peak levels of cephalexin by 11% and reduces the exposure to cephalexin by 18%. By decreasing cephalexin levels, zinc might increase the risk of treatment failure. This effect does not occur when zinc is taken 3 hours after the cephalexin dose (94163). To avoid an interaction, advise patients take zinc sulfate 3 hours after taking cephalexin.
|
Theoretically, zinc might interfere with the therapeutic effects of cisplatin.
Details
Animal research suggests that zinc stimulates tumor cell production of the protein metallothionein, which binds and inactivates cisplatin (11624,11625). It is not known whether zinc supplements or high dietary zinc intake can cause clinically significant interference with cisplatin therapy. Cisplatin might also increase zinc excretion.
|
Theoretically, taking zinc along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
Details
|
Zinc might reduce the levels and clinical effects of penicillamine.
Details
By forming an insoluble complex with penicillamine, zinc interferes with penicillamine absorption and activity. Zinc supplements reduce the efficacy of low-dose penicillamine (0.5-1 gram/day), but do not seem to affect higher doses (1-2.75 gram/day), provided dosing times are separated (2678,4534,11605). Advise patients to take zinc and penicillamine at least 2 hours apart.
|
Zinc can decrease the levels and clinical effects of quinolones antibiotics.
Details
|
Zinc modestly reduces levels of ritonavir.
Details
Clinical research shows that zinc might reduce serum ritonavir levels by chelating with ritonavir in the gut and preventing its absorption (93578). In patients with HIV, ritonavir is taken with atazanavir to prevent the metabolism and increase the effects of atazanavir. A pharmacokinetic study shows that, in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate (Solvazinc tablets) 125 mg as a single dose or as multiple daily doses for 2 weeks reduces plasma levels of ritonavir by about 16% (90216). However, atazanavir levels still remains high enough to prevent HIV virus replication. Therefore, the decrease in ritonavir levels is not likely to be clinically significant.
|
Zinc might reduce levels of tetracycline antibiotics.
Details
Tetracyclines form complexes with zinc in the gastrointestinal tract, which can reduce absorption of both the tetracycline and zinc when taken at the same time (3046,4945). Taking zinc sulfate 200 mg with tetracycline reduces absorption of the antibiotic by 30% to 40% (11615). Demeclocycline and minocycline cause a similar interaction (4945). However, doxycycline does not seem to interact significantly with zinc (11615). Advise patients to take tetracyclines at least 2 hours before, or 4-6 hours after, zinc supplements to avoid any interactions.
|
Below is general information about the adverse effects of the known ingredients contained in the product Triumph. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, ashwagandha seems to be well-tolerated.
Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal upset, nausea, and vomiting. However, these adverse effects do not commonly occur with typical doses.
Serious Adverse Effects (Rare):
Orally: Some case reports raise concerns about acute hepatitis, acute liver failure, hepatic encephalopathy, the need for liver transplantation, and death due to liver failure with ashwagandha treatment.
Dermatologic ...Orally, dermatitis has been reported in three of 42 patients in a clinical trial (19276).
Endocrine ...A case report describes a 73-year-old female who had taken an ashwagandha root extract (unspecified dose) for 2 years to treat hypothyroidism which had been previously managed with levothyroxine. The patient was diagnosed with hyperthyroidism after presenting with supraventricular tachycardia, chest pain, tremor, dizziness, fatigue, irritability, hair thinning, and low thyroid stimulating hormone (TSH) levels. Hyperthyroidism resolved after discontinuing ashwagandha (108745). Additionally, an otherwise healthy adult who was taking ashwagandha extract orally for 2 months experienced clinical and laboratory-confirmed thyrotoxicosis. Thyrotoxicosis resolved 50 days after discontinuing ashwagandha, without other treatment (114111).
Gastrointestinal ...Orally, large doses may cause gastrointestinal upset, diarrhea, and vomiting secondary to irritation of the mucous and serous membranes (3710). When taken orally, nausea and abdominal pain (19276,110490,113609) and gastritis and flatulence (90651) have been reported.
Genitourinary ...In one case report, a 28-year-old male with a decrease in libido who was taking ashwagandha 5 grams daily over 10 days subsequently experienced burning, itching, and skin and mucous membrane discoloration of the penis, as well as an oval, dusky, eroded plaque (3 cm) with erythema on the glans penis and prepuce (32537).
Hepatic ...Orally, ashwagandha in doses of 154 mg to 20 grams daily has played a role in several case reports of cholestatic, hepatocellular, and mixed liver injuries. In most of these cases, other causes of liver injury were excluded, and liver failure did not occur. Symptoms included jaundice, pruritus, malaise, fatigue, lethargy, weight loss, nausea, diarrhea, abdominal pain and distension, stool discoloration, and dark urine. Symptom onset was typically 5-180 days from first intake, although in some cases onset occurred after more than 12 months of use (102686,107372,110490,110491,111533,111535,112111,113610,114113). Laboratory findings include elevated aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase, serum bilirubin, and international normalized ratio (INR) (112111,113610,114113). In most cases, liver enzymes normalized within 1-5 months after discontinuation of ashwagandha (102686,107372,110491,111535,112111,114113). However, treatment with corticosteroids, lactulose, ornithine, ursodeoxycholic acid, and plasmapheresis, among other interventions, was required in one case (111533). Rarely, use of oral ashwagandha has been reported to cause hepatic encephalopathy, liver failure requiring liver transplantation, and acute-on-chronic liver failure resulting in death (110490,113610).
Neurologic/CNS ...Orally, ashwagandha has been reported to cause drowsiness (110492,113609). Headache, neck pain, and blurry vision have been reported in a 47-year-old female taking ashwagandha, cannabis, and venlafaxine. Imaging over the course of multiple years and hospital admissions indicated numerous instances of intracranial hemorrhage and multifocal stenosis of intracranial arteries, likely secondary to reversible cerebral vasoconstriction syndrome (RCVS) (112113). It is unclear whether the RCVS and subsequent intracranial hemorrhages were precipitated by ashwagandha, cannabis, or venlafaxine.
General
...Orally, black pepper seems to be well tolerated when used in the amounts found in food or when taken as a medicine as a single dose.
Topically and as aromatherapy, black pepper oil seems to be well tolerated.
Most Common Adverse Effects:
Orally: Burning aftertaste, dyspepsia, and reduced taste perception.
Inhalation: Cough.
Serious Adverse Effects (Rare):
Orally: Allergic reaction in sensitive individuals.
Gastrointestinal ...Orally, black pepper can cause a burning aftertaste (5619) and dyspepsia (38061). Single and repeated application of piperine, the active constituent in black pepper, to the tongue and oral cavity can decrease taste perception (29267). By intragastric route, black pepper 1.5 grams has been reported to cause gastrointestinal microbleeds (29164). It is not clear if such an effect would occur with oral administration.
Immunologic ...In one case report, a 17-month-old male developed hives, red eyes, facial swelling, and a severe cough following consumption of a sauce containing multiple ingredients. Allergen skin tests were positive to both black pepper and cayenne, which were found in the sauce (93947).
Ocular/Otic ...Topically, ground black pepper can cause redness of the eyes and swelling of the eyelids (5619).
Pulmonary/Respiratory ...When inhaled through the nose as an olfactory stimulant, black pepper oil has been reported to cause cough in one clinical trial (29162).
General
...Orally, boron is generally well tolerated when used in doses below the tolerable upper intake level (UL) of 20 mg.
Vaginally, boron is well tolerated.
Most Common Adverse Effects:
Orally: Anorexia, dermatitis, erythema, indigestion.
Vaginally: Burning and pain.
Dermatologic
...Orally, chronic use of 1 gram daily of boric acid or 25 grams daily of boric tartrate can cause dermatitis and alopecia (7135).
Larger doses can result in acute poisoning. Symptoms of poisoning in adults and children may include skin erythema, desquamation, and exfoliation (17).
Gastrointestinal
...Orally, chronic use of 1 gram daily of boric acid or 25 grams daily of boric tartrate can cause anorexia and indigestion (7135).
Larger doses can result in acute poisoning. Children who have ingested 5 grams or more of borates can have persistent nausea, vomiting, and diarrhea leading to acute dehydration, shock, and coma. Adults who have ingested 15-20 grams of borate can exhibit nausea, vomiting, diarrhea, epigastric pain, hematemesis, and a blue-green discoloration of feces and vomit (17).
Genitourinary ...Vaginally, boric acid can cause vulvovaginal burning and dyspareunia in males if intercourse occurs shortly after vaginal treatment (15447).
Neurologic/CNS ...Orally, large doses can result in acute poisoning. Poisoning with boron can cause hyperexcitability, irritability, tremors, convulsions, weakness, lethargy, and headaches (17).
Ocular/Otic ...Exposure to boric acid or boron oxide dust has been reported to cause eye irritation (36852).
Pulmonary/Respiratory ...Exposure to boric acid and boron oxide dust has been reported to cause mouth and nasal passage irritation, sore throat, and productive cough (36852).
General
...Orally, diindolylmethane is generally well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, gas, headache, nausea, rash, and vomiting.
Serious Adverse Effects (Rare):
Orally: Drug rash with eosinophilia and systemic symptoms (DRESS).
Dermatologic ...Orally, diindolylmethane can cause rash (47615,93836). In one case report, a patient developed drug rash with eosinophilia and systemic symptoms (DRESS) after consuming a product containing diindolylmethane, vitamin E, and broccoli powder. An allergen patch test was positive for diindolylmethane (93840).
Endocrine ...Orally, diindolylmethane was associated with grade 3 asymptomatic hyponatremia in 2 of 4 patients taking 600 mg daily for 28 days in one clinical study. Hyponatremia was not seen in the 8 patients taking diindolylmethane 150-450 mg daily (47729).
Gastrointestinal ...Orally, diindolylmethane can cause nausea, vomiting, diarrhea, and gas (47652,47676,47709,47729,93836).
Genitourinary ...Orally, diindolylmethane can cause the urine to darken (93836).
Hematologic ...In one case report, a 65-year-old male developed a deep vein thromboembolism (DVT) and bilateral pulmonary emboli (PE) within a few weeks of initiating treatment with diindolylmethane. It is unclear if diindolylmethane contributed to this event; the patient was at increased risk for emboli due to his age, weight, tobacco use, and possible history of pulmonary embolism (93835).
Hepatic ...In one case report, a patient developed drug rash with eosinophilia and systemic symptoms (DRESS), involving elevated liver transaminases, after consuming a product containing diindolylmethane, vitamin E, and broccoli powder. An allergen patch test was positive for diindolylmethane (93840).
Immunologic ...In one case report, a patient developed drug rash with eosinophilia and systemic symptoms (DRESS) after consuming a product containing diindolylmethane, vitamin E, and broccoli powder. The patient developed fever, activated lymphocytes, and swollen lymph nodes. An allergen patch test was positive for diindolylmethane (93840).
Musculoskeletal ...Orally, diindolylmethane has been reported to cause arthralgias (47615).
Neurologic/CNS ...Orally, diindolylmethane can cause headache (47652,47676,93836). One case has reported ischemic stroke in a 38-year-old female with a history of a patent foramen ovale (PFO), traumatic subdural hematoma, right partial hemicraniectomy, and use of several supplements, including 200 mg of diindolylmethane daily, vitamin D3, vitamin K2, elderberry, caffeine, and possibly cannabis (112895). It is unclear if diindolylmethane contributed to this event; the patient was at increased risk for stroke due to PFO and other factors.
General
...Orally, fenugreek seed is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, diarrhea, dyspepsia, flatulence, hypoglycemia, and nausea.
Serious Adverse Effects (Rare):
All ROA: Severe allergic reactions including angioedema, bronchospasm, and shock.
Endocrine ...Orally, large doses of fenugreek seed, 100 grams daily of defatted powder, have caused hypoglycemia (164,96068).
Gastrointestinal ...Orally, fenugreek seed can cause mild gastrointestinal symptoms, such as diarrhea, dyspepsia, abdominal distention and pain, nausea, and flatulence, especially when taken on an empty stomach (622,12534,18349,93421,96065,96068,105016).
Immunologic ...Fenugreek can cause allergic reactions when used orally and topically, and when the powder is inhaled (719,96068). Orally, fenugreek has caused bronchospasm, diarrhea, and itching, and skin reactions severe enough to require intravenous human immunoglobulin (96068). Topically, fenugreek paste has resulted in facial swelling, wheezing, and numbness around the head (719,96068). When used both orally and topically by a single individual, asthma and rhinitis occurred (96068). Inhalation of fenugreek powder has resulted in fainting, sneezing, runny nose, and eye tearing (719,96068).
Neurologic/CNS ...Orally, loss of consciousness has occurred in a 5 week-old infant drinking tea made from fenugreek (9782). Dizziness and headaches have been reported in clinical research of fenugreek extract (49551,93419). However, these events are rare.
Renal ...Orally, fenugreek aqueous see extract may increase the frequency of micturition, although this even appears to be rare (49551).
Other
...Consumption of fenugreek during pregnancy, immediately prior to delivery, may cause the neonate to have an unusual body odor, which may be confused with maple syrup urine disease.
It does not appear to cause long-term sequelae (9781). This unusual body odor may also occur in children drinking fenugreek tea. A case of a specific urine and sweat smell following oral fenugreek extract use has been reported for a patient in one clinical trial (18349).
In 2011, outbreaks of enteroaggregative hemorrhagic Escherichia coli (EATEC) O104:H4 infection occurred in Germany and Spain. Epidemiological studies linked the outbreaks to fenugreek seeds that had been imported from Africa. However, laboratory analyses were unable to isolate the causative strain of bacteria from fenugreek seed samples (49776,49777,49781,90114).
General
...Orally, zinc is well tolerated in doses below the tolerable upper intake level (UL), which is 40 mg daily for adults.
Topically, zinc is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, diarrhea, metallic taste, nausea and vomiting (dose-related).
Topically: Burning, discoloration, itching, stinging, and tingling when applied to irritated tissue.
Intranasally: Bad taste, dry mouth, headache, irritation, reduced sense of smell.
Serious Adverse Effects (Rare):
Orally: There have been cases of acute renal tubular necrosis, interstitial nephritis, neurological complications, severe vomiting, and sideroblastic anemia after zinc overdose.
Intranasally: There have been cases where intranasal zinc caused permanent loss of smell (anosmia).
Dermatologic
...Topically, zinc can cause burning, stinging, itching, and tingling when applied to inflamed tissue (6911,8623,87297).
Zinc oxide can be deposited in the submucosal tissue and cause dark discoloration of the skin. This can occur with prolonged topical application to intact skin, application to eroded or ulcerated skin, or penetrating traumatic exposure, and also parenteral administration (8618).
In rare cases, oral zinc has resulted in worsened acne (104056), skin sensitivity (6592), a leishmanial reaction with a macular rash that occurred on exposed parts of the body (86935), eczema (104055), systemic contact dermatitis (109457), and the development of severe seborrheic dermatitis (86946).
Gastrointestinal
...Orally, zinc can cause nausea (338,2663,2681,6592,6700,18216,106230,106233,106227,113661), vomiting (2663,2681,6519,6592,96069,96074), a metallic or objectionable taste in the mouth (336,338,6700,11350,18216,106902,113661), abdominal cramping (6592,96069), indigestion (87227), heartburn (96069), dry mouth (87533), and mouth irritation (336,2619).
When used orally in amounts above the tolerable upper intake level, zinc may cause irritation and corrosion of the gastrointestinal tract (331,86982,87315,106902), watery diarrhea (1352), epigastric pain (2663,2681), and severe vomiting (2663,2681).
Intranasally, zinc can cause bad taste, dry mouth, and burning and irritation of the throat (8628,8629).
When used topically as a mouth rinse, zinc may cause tooth staining (90206).
Hematologic ...There is concern that high daily doses of zinc, above the tolerable upper intake level (UL) of 40 mg per day, might increase the risk of copper deficiency, potentially leading to anemia and leukopenia (7135,112473). To prevent copper deficiency, some clinicians give a small dose of copper when zinc is used in high doses, long-term (7303).
Hepatic ...There are two cases of liver deterioration in patients with Wilson disease following initiation of treatment with zinc 50-200 mg three times daily. The mechanism of action is not understood, and the event is extremely uncommon (86927,87470).
Immunologic ...Daily doses of 300 mg of supplemental zinc for 6 weeks appear to impair immune response (7135). A case of erythematosus-like syndrome, including symptoms such as fever, leg ulcers, and rash, has been reported following intake of effervescent tablets (Solvezink) containing zinc 45 mg (87506). In another case, severe neutropenia was reported after taking supplemental zinc 900 mg daily for an unknown duration (112473).
Musculoskeletal ...Orally, zinc may cause body aches in children (113661).
Neurologic/CNS
...Zinc-containing denture adhesives can cause toxicity if used more frequently than recommended for several years.
Case reports describe hyperzincemia, low copper levels, blood dyscrasias, and neurological problems, including sensory disturbances, numbness, tingling, limb weakness, and difficulty walking in patients applying denture adhesive multiple times daily for several years (17092,17093,90205,90233). Due to reports of zinc toxicity associated with use of excessive amounts of zinc-containing denture adhesives for several years, GlaxoSmithKline has reformulated Polygrip products to remove their zinc content (17092,17093).
Intranasally (8628) and orally (87534), zinc can cause headache. When used orally in amounts above the tolerable upper intake level (UL), zinc may cause central nervous system (CNS) symptoms including lethargy, fatigue, neuropathy, dizziness, and paresthesia (2663,2681,87369,87470,87533,87534,112473).
Oncologic ...There is concern that zinc might worsen prostate disease. For example, some preliminary evidence suggests that higher dietary zinc intake increases the risk for benign prostatic hyperplasia (6908). Epidemiological evidence suggests that taking more than 100 mg of supplemental zinc daily or taking supplemental zinc for 10 or more years doubles the risk of developing prostate cancer (10306). Another large-scale population study also suggests that men who take a multivitamin more than 7 times per week and who also take a separate zinc supplement have a significantly increased risk of prostate cancer-related mortality (15607). However, a large analysis of population research suggests that there is no association between zinc intake and the risk of prostate cancer (96075).
Pulmonary/Respiratory
...There are several hundred reports of complete loss of sense of smell (anosmia) that may be permanent with use of zinc gluconate nasal gel, such as Zicam (11306,11155,11707,16800,16801,17083,86999,87535).
Loss of sense of smell is thought to be dose related but has also been reported following a single application (11306,11155,11707,16800). Patients often report having sniffed deeply when applying the gel, then experiencing an immediate burning sensation, and noticing anosmia within 48 hours (17083). On June 16, 2009, the US Food and Drug Administration (FDA) advised patients not to use a specific line of commercial zinc nasal products (Zicam) after receiving 130 reports of loss of smell (16800). The manufacturer of these products had also received several hundred reports of loss of smell related to its intranasal zinc products (16801). Zinc sulfate nasal spray was used unsuccessfully for polio prophylaxis before the polio vaccine was developed. It caused loss of smell and/or taste, which was sometimes permanent (11713). Animal studies suggest that zinc sulfate negatively affects smell, possibly by damaging the olfactory epithelium and neurons (11156,11703,11704,11705,11706). Zinc gluconate nasal spray has not been tested for safety in animals or humans. The clinical studies of intranasal zinc have not described anosmia as an adverse effect, but testing was not done to see if zinc use adversely affected sense of smell (6471,8628,8629,10247). Also, these clinical studies reported tingling or burning sensation in the nostril, dry nose, nose pain, and nosebleeds.
When used in amounts above the tolerable upper intake level (UL), zinc may cause flu-like symptoms including coughing (2663).
Renal ...In overdose, zinc can cause acute renal tubular necrosis and interstitial nephritis (331,1352,87338).
Other ...Occupational inhalation of zinc oxide fumes can cause metal fume fever with symptoms including fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste, and salivation (331).