Ingredients | Each Tablet Contains |
---|---|
(Piper methysticum )
(root)
|
400 mg |
(Piper methysticum )
(root)
|
3.2 Gram(s) |
(contains std.)
|
50 mg |
(Ziziphus jujuba var. spinosa )
(seed)
|
300 mg |
(Ziziphus jujuba var. spinosa )
(seed)
|
3 Gram(s) |
(Passiflora incarnata )
(herb top flowering)
|
75 mg |
(Passiflora incarnata )
(herb top flowering)
|
1.5 Gram(s) |
(Magnolia officinalis )
(stem bark)
|
150 mg |
(Magnolia officinalis )
(stem bark)
|
1.5 Gram(s) |
(Melissa officinalis )
(flower and leaf)
|
75 mg |
(Melissa officinalis )
(flower and leaf)
|
750 mg |
(Magnesium Amino Acid Chelate)
|
50 mg |
100 mg |
Below is general information about the effectiveness of the known ingredients contained in the product Anxioton. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Anxioton. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Glycine has been used safely at doses up to 6 grams daily for 4 weeks (106497) and doses up to 9 grams daily for 3 days (10250,10251,10252,92319). There is insufficient reliable information available about the safety of glycine when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally, short-term. Kava extracts have been used safely in clinical trials under medical supervision for up to 6 months (2093,2094,2095,4032,7325,15046,15130,18314,18316,18318)(18320,29663,29671,98980,102086,112642). Historically, there has been some concern that kava preparations could induce hepatotoxicity and liver failure in patients taking relatively normal doses, short-term. At least 100 cases of liver toxicity following kava use have been reported. Although liver toxicity is more frequently associated with prolonged use of very high doses (6401,57346), in some cases the use of kava for as little as 1-3 months has been associated with the need for liver transplants, and even death (390,7024,7068,7086,7096,17086,57252)(57254,57297). However, some experts question the clinical validity of several of these cases (11369,11371).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
There is some concern that pyrone constituents in kava can cause loss of uterine tone (19); avoid using.
LACTATION: POSSIBLY UNSAFE
when used orally.
There is concern that the toxic pyrone constituents of kava can pass into breast milk (19); avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Lemon balm has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Lemon balm extract has been used with apparent safety at a dose of 500 mg daily for 6 months or at a dose of 3000 mg daily for 2 months (9993,9994,104435,104435,110136). ...when used topically and appropriately, short-term. Lemon balm 1% dried leaf extract has been used up to 4 times daily with apparent safety for a few days (790,9995).
CHILDREN: POSSIBLY SAFE
when used orally and appropriate, short-term.
A single dose of lemon balm extract 3-6 mg/kg has been safely used in children aged 6-7 years (19525). A specific combination product providing lemon balm leaf extract 80 mg and valerian root extract 160 mg (Euvegal forte, Dr. Willmar Schwabe Pharmaceuticals) 1-2 tablets once or twice daily has been safely used in children under 12 years of age for 30 days (14416). In infants up to 4 weeks old, multi-ingredient products (ColiMil, ColiMil Plus) containing lemon balm 64-97 mg daily have been used with apparent safety for up to 7 days (16735,96278).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
POSSIBLY SAFE ...when used orally and appropriately, short-term. A specific product containing magnolia extract and phellodendron extract (Relora, Next Pharmaceuticals, Inc.) has been used with apparent safety in clinical trials at a dose of 250 mg two to three times daily for up to 6 weeks (14349,34246,94904). ...when used topically in a toothpaste for up to 6 months (92464).
PREGNANCY: UNSAFE
when the magnolia flower bud is used orally due to reports of uterine stimulant activity (11953).
There is insufficient reliable information available about the safety of using magnolia bark during pregnancy; avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally as a flavoring in foods. The US Food and Drug Administration (FDA) lists passion flower as a permitted food flavoring additive, to be used in the minimum quantity necessary (91203).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Passion flower extract has been used with apparent safety at doses up to 800 mg daily for up to 8 weeks (88198,102866). A specific passion flower extract (Pasipay, Iran Darouk Pharmaceutical Company) has been safely used at a dose of 45 drops daily for up to one month (8007,95036). Also, a tea prepared by steeping 2 grams of the dried aerial parts of passion flower in 250 mL of boiling water for 10 minutes has been used nightly for 7 nights (17374). There is insufficient reliable information available about the safety of passion flower when used topically.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A specific passion flower product (Pasipay, Iran Darouk Pharmaceutical Company) has been used safely in children aged 6-13 years at a dose of 0.04 mg/ kg daily for 8 weeks (88197).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Some case reports suggest that passion flower use during the first and second trimesters of pregnancy may be associated with an increased risk for premature rupture of membranes and meconium aspiration syndrome; however, causality has not been confirmed (97279). The alkaloids harman and harmaline, which are sometimes found in passion flower, have been reported to have uterine stimulant activity (4,11020,95037). It is not known whether these constituents are present in sufficient quantities to have an effect.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when zizyphus fruit is consumed in the amounts typically found in foods.
POSSIBLY SAFE ...when zizyphus fruit or seed is used orally and appropriately, short-term. Zizyphus fruit powder has been used with apparent safety at doses up to 30 grams daily for up to 12 weeks (93317,104507). Zizyphus fruit extract has been used with apparent safety at a dose of 20-40 drops daily for up to 12 weeks (93316). Zizyphus seed extract has been used with apparent safety at a dose of 2 grams daily for 4 weeks (107921). There is insufficient reliable information available about the safety of zizyphus when used topically.
PREGNANCY AND LACTATION: LIKELY SAFE
when zizyphus fruit is consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of zizyphus fruit in amounts greater than those found in foods; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Anxioton. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, glycine might decrease the effectiveness of clozapine.
Details
One small clinical study in patients with schizophrenia shows that adding glycine to clozapine therapy worsens symptoms of schizophrenia when compared with clozapine alone (10253). The mechanism of this interaction is unclear.
|
Combining kava with alcohol may increase the risk of sedation and/or hepatotoxicity.
Details
Kava has CNS depressant effects (11373,18316). Concomitant use of kava with other CNS depressants can increase the risk of drowsiness and motor reflex depression (2093,2098). Additionally, kava has been associated with over 100 cases of hepatotoxicity. There is some concern that kava can adversely affect the liver, especially when used in combination with hepatotoxic drugs (7024,7068,7086,7096,17086,57346). Clinical practice guidelines from a joint taskforce of the World Federation of Societies of Biological Psychiatry (WFSBP) and the Canadian Network for Mood and Anxiety Treatments (CANMAT) recommend that alcohol not be used with kava (110318). |
Combining kava with CNS depressants can have additive sedative effects.
Details
Kava has CNS depressant effects (11373,18316). Concomitant use of kava with other CNS depressants can increase the risk of drowsiness and motor reflex depression (2093,2098). Clinical practice guidelines from a joint taskforce of the World Federation of Societies of Biological Psychiatry (WFSBP) and the Canadian Network for Mood and Anxiety Treatments (CANMAT) recommend that CNS depressants, including alcohol and benzodiazepines, not be used with kava (110318).
|
It is unclear if kava inhibits CYP1A2; research is conflicting.
Details
Although in vitro research and a case report suggest that kava inhibits CYP1A2 (8743,12479,88593), more robust clinical evidence shows that kava has no effect on CYP1A2. In a clinical study in healthy volunteers, taking kava 1000 mg twice daily (containing a daily dose of 138 mg kavalactones) for 28 days had no effect on CYP1A2 activity (13536,98979).
|
Theoretically, kava might increase levels of CYP2C19 substrates.
Details
|
Theoretically, kava might increase levels of CYP2C9 substrates.
Details
|
It is unclear if kava inhibits CYP1A2; research is conflicting.
Details
|
Kava might increase levels of CYP2E1 substrates.
Details
In a clinical study in healthy volunteers, taking kava 1000 mg twice daily (containing a daily dose of 138 mg kavalactones) for 28 days inhibited the metabolism of CYP2E1 substrates (13536).
|
It is unclear if kava inhibits CYP3AA; research is conflicting.
Details
Although in vitro research suggests that kava inhibits CYP3A4 (8743,12479), more robust clinical evidence shows that kava has no effect on CYP3A4. In a clinical study in healthy volunteers, taking kava 1000 mg twice daily (containing a daily dose of 138 mg kavalactones) for 28 days had no effect on CYP3A4 activity (13536,98979).
|
Combining kava and haloperidol might increase the risk of cardiovascular adverse effects and hypoxia.
Details
Atrial flutter and hypoxia has been reported for a patient who received intramuscular injections of haloperidol and lorazepam after using kava orally. The side effects were attributed to kava-induced inhibition of CYP2D6, but might also have been related to additive adverse effects with the concomitant use of haloperidol, lorazepam, and kava (88593).
|
Theoretically, using kava with hepatotoxic drugs might increase the risk of liver damage.
Details
|
It is unclear if kava inhibits P-glycoprotein (P-gp); research is conflicting.
Details
In vitro research shows that kava can inhibit P-gp efflux (15131). However, a clinical study in healthy volunteers shows that taking kava standardized to provide 225 mg kavalactones daily for 14 days does not affect the pharmacokinetics of digoxin, a P-gp substrate (15132,98979). It is possible that the use of other P-gp substrates or higher doses of kava might still inhibit P-gp.
|
Taking kava with ropinirole might increase the risk for dopaminergic toxicity.
Details
A case of visual hallucinations and paranoid delusions has been reported for a patient who used kava in combination with ropinirole. The adverse effects were attributed to kava-induced inhibition of CYP1A2, which may have reduced the metabolism of ropinirole, resulting in excessive dopaminergic stimulation (88593).
|
Theoretically, concomitant use of lemon balm might have additive effects with CNS depressant drugs.
Details
|
Theoretically, lemon balm might interfere with thyroid hormone replacement therapy.
Details
In vitro, constituents of lemon balm extract bind to thyroid stimulating hormone (TSH), preventing TSH receptor-binding and leading to the inhibition of TSH-stimulated adenylate cyclase activity (19727,19728). In animals, lemon balm extract has been shown to decrease levels of circulating TSH and inhibit thyroid secretion (19726).
|
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Details
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
Details
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
Details
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Details
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Details
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
Details
|
Gabapentin absorption can be decreased by magnesium.
Details
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
Details
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Details
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Details
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Details
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
Details
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Details
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Details
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Details
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Theoretically, magnolia might have additive effects and increase the risk of bleeding when used with anticoagulant or antiplatelet drugs.
Details
In vitro research shows that the chemicals magnolol and honokiol, isolated from magnolia bark, inhibit platelet aggregation that is experimentally induced by collagen and arachidonic acid. However, they do not inhibit platelet aggregation that is induced by adenosine diphosphate, platelet-activating factor, or thrombin (18273). This interaction has not been reported in humans.
|
Theoretically, concomitant use of large doses of magnolia bark and CNS depressants might have additive effects.
Details
|
Concomitant use of passion flower with sedative drugs might cause additive effects and side effects.
Details
|
Theoretically, passion flower might decrease the effects of CYP3A4 substrates.
Details
In vitro research suggests that passion flower can induce CYP3A4 enzymes, albeit to a much lower degree than rifampin, a known CYP3A4 inducer (110704).
|
Theoretically, passion flower might reduce the bioavailability of OATP2B1 and OATP1A2 substrates.
Details
In vitro research shows that the passion flower constituents apigenin and vitexin inhibit OATP2B1 and OATP1A2. This inhibition may be dose-dependent. One specific high-flavonoid passion flower extract (Valverde) seems to inhibit OATP2B1 and OATP1A2, while another extract with a lower flavonoid concentration (Arkocaps) shows less potent inhibition (105095). OATPs are responsible for the uptake of drugs and other compounds into the body; however, the specific activities of OATP2B1 and OATP1A2 are not well characterized.
|
Theoretically, zizyphus might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, zizyphus might cause additive sedative effects when taken with CNS depressants.
Details
|
Theoretically, zizyphus might decrease the levels and clinical effects of drugs metabolized by CYP1A2.
Details
Animal research shows that zizyphus induces CYP1A2 enzymes (93311). However, this effect has not been reported in humans.
|
Below is general information about the adverse effects of the known ingredients contained in the product Anxioton. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally and topically, glycine seems to be well tolerated.
Gastrointestinal ...Soft stools, nausea, vomiting, and upper gastrointestinal (GI) tract discomfort have occurred rarely with oral use of glycine. These symptoms resolve rapidly with discontinuation of glycine (10252,11320,92319). Dry mouth has also been reported but any association to glycine is unclear (92321).
Neurologic/CNS ...Mild sedation has occurred rarely with oral use of glycine. Symptoms resolve rapidly with discontinuation of glycine (10252,11320,92321). Irritability, insomnia, fatigue, memory impairment, headache, and sensory impairment have been reported, but any association with glycine is unclear (92321).
General
...Orally, kava seems to be well tolerated.
Most Common Adverse Effects:
Orally: Drowsiness, dry mouth, dizziness, gastrointestinal upset, headache, memory problems, tremor.
Serious Adverse Effects (Rare):
Orally: There have been over 100 reported cases of hepatotoxicity and a few reported cases of rhabdomyolysis.
Cardiovascular ...Long-term use of very large amounts of kava, especially in high doses (400 mg kava pyrones daily), has been associated with overall poor health including symptoms of low body weight, reduced protein levels, puffy face, hematuria, increased red blood cell volume, decreased platelets and lymphocytes, and possibly pulmonary hypertension (4032,6402). Tachycardia and electrocardiogram (ECG) abnormalities (tall P waves) have been reported in heavy kava users (6402).
Dermatologic ...Orally, kava can cause allergic skin reactions, including sebotropic eruptions, delayed-type hypersensitivity, or urticarial eruption (4032,11370,28489,57277,57325,57343,114683). In one case of kava-associated urticarial eruption, biopsy revealed neutrophilic sebaceous glands with lymphocytic infiltrate (114683). Chronic use of high doses of kava has also been associated with kava dermopathy, which consists of reddened eyes; dry, scaly, flaky skin; and temporary yellow discoloration of the skin, hair, and nails (6240,6401,8414,8417,11370,28485,57342). This pellagra-like syndrome is unresponsive to niacinamide treatment (6240,7728,11370). The cause is unknown, but may relate to interference with cholesterol metabolism (6240). Kava's adverse effects on liver function might also contribute to kava dermopathy (6401,8417). Kava dermopathy usually occurs within three months to one year of regular kava use, and resolves when the kava dose is decreased or discontinued (6401,8414). Kava dose should be decreased or discontinued if kava dermopathy occurs (6401). In addition to kava cessation, oral or topical corticosteroids have been described as treatment options in some cases of kava associated dermatitis (114683).
Gastrointestinal ...Orally, kava may cause gastrointestinal upset, nausea, or dry mouth (2093,2094,4032,11370,18316,57228,57343).
Hematologic ...Orally, chronic use of very high doses of kava has been associated with increased red blood cell volume, reduced platelet volume, reduced lymphocyte counts, and reduced serum albumin (6402,57258). Hematuria has also been reported anecdotally (6402).
Hepatic
...Since the early 2000's, hepatotoxicity has been a particular concern with kava.
Worldwide, there have been at least 100 reported cases of hepatotoxicity following use of kava products (7024,7068,7086,7096,11795,17086)(57252,57254,57297). However, some experts question the clinical validity of several of these cases (11369,11371). Some cases were reported multiple times and in some cases it was unlikely that kava was the causative agent (7068,57253).
In susceptible patients, symptoms can show up after as little as 3-4 weeks of kava use. Symptoms include yellowed skin (jaundice), fatigue, and dark urine (7024,7068). Liver function tests can be elevated after 3-8 weeks of use, possibly followed by hepatomegaly and onset of encephalopathy (7024). Kava has also been reported to exacerbate hepatitis in patients with a history of recurrent hepatitis (390). However, in many cases, symptoms seem to resolve spontaneously, and liver function tests usually normalize within eight weeks (390,7068).
Liver toxicity is more frequently associated with prolonged use of very high doses (6401,57346). But there is some concern that even short-term use of kava in typical doses might cause acute hepatitis in some patients, including severe hepatocellular necrosis. The use of kava for as little as 1-3 months has resulted in need for liver transplant and death, although these events are rare (7024,7068,7086,7096,17086).
There is some speculation that the type of extraction method could be responsible for these rare cases of hepatotoxicity (17086). The "Pacific kava paradox" holds that while the alcohol and acetone extracts of kava used for commercial products cause liver toxicity, the traditional kava rhizome preparation mixed with water might not be toxic (11794,17086). However, a more recent analysis reports cases of hepatotoxicity from the aqueous kava extract and suggests that kava's hepatotoxic effects may be due to contaminants such as mold (29676). Other suggested causes of hepatotoxicity include quality of the kava plant, concomitant medications, large doses and prolonged use, and toxic constituents and metabolites of kava (57300,88532).
Some commercial kava extracts contain parts of the stems and other aerial parts in addition to the rhizome, and it has been suggested that a constituent called pipermethysine, which is only found in these aerial parts, might be partly responsible for hepatotoxicity (17086). Other constituents of kava which might contribute to hepatotoxicity are kavalactones, which are metabolized by cytochrome P450 (CYP450) enzymes in the liver. Reactive metabolites are produced which conjugate with glutathione, and might deplete glutathione in a similar manner to acetaminophen (17086). Increased levels of gamma-glutamyl transferase, involved in the production of glutathione, have been reported in chronic kava users (17086). One of the enzymes involved in production of reactive metabolites from kavalactones is cytochrome P450 2E1 (CYP2E1), which is induced by chronic alcohol intake. Alcohol may also compete for other enzymes which clear kavalactone metabolites from the body. This might explain the observation that alcohol ingestion seems to increase the risk of hepatotoxicity with kava (7068,17086).
There is also speculation that "poor metabolizers" or those patients with deficiency in the cytochrome P450 2D6 (CYP2D6) isoenzyme, which occurs in up to 10% of people of European descent, may be at increased risk for hepatotoxic effects from kava (7068). This deficiency has not been found in Pacific Islanders. However, this theory has not been confirmed.
Due to the concerns regarding the potential hepatotoxicity of kava, kava supplements were withdrawn from European and Canadian markets in 2002 (7086). However, many of the market withdrawals of kava have been lifted after re-evaluation of kava suggested that the risk of hepatotoxicity was minimal (91593,91594,91615). Still, clinical practice guidelines from a joint taskforce of the World Federation of Societies of Biological Psychiatry (WFSBP) and the Canadian Network for Mood and Anxiety Treatments (CANMAT) recommend exercising caution when using kava in patients with preexisting liver issues (110318). Until more is known, tell patients to use kava cautiously and recommend liver function tests for routine users or those with underlying liver disease.
Immunologic ...Sjögren syndrome has been associated with an herbal supplement containing kava, echinacea, and St. John's wort. Echinacea may have been the primary cause, because Sjögren syndrome is an autoimmune disorder. The role of kava in this syndrome is unclear (10319).
Musculoskeletal
...Kava has been linked with reports of rhabdomyolysis.
A 34-year-old man who consumed kava tea several times a week developed rhabdomyolysis with a peak creatine kinase level of 32,500 units/liter (18212). However, there is speculation that this might have been due to product impurities rather than kava itself. Another case report describes rhabdomyolysis with myoglobinuria and a creatine kinase level of 100,500 units/liter in a 29-year-old man who had taken kava in combination with guarana and ginkgo biloba (18213).
Cases of ataxia and tremors have been reported in patients taking single doses of kava powder 205 grams (11373).
Neurologic/CNS
...Orally, kava may cause headache, dizziness, and drowsiness (4032,6402,11370,11372,11373,18316,112642).
It might also cause extrapyramidal side effects such as involuntary oral and lingual reflexes, twisting movements of the head and trunk, tremors, and other parkinsonian-like symptoms possibly due to dopamine antagonism (534,4055,7727,8415,102086). In one clinical trial, patients taking a kava supplement providing 120 mg of kavalactones twice daily for 16 weeks had a 3.2-fold greater risk of experiencing tremors when compared with patients taking placebo (102086). Theoretically, kava may worsen symptoms in patients with Parkinson disease or precipitate Parkinson-like symptoms in certain patients (4055,7727). Unlike benzodiazepines, kava is not thought to be associated with impaired cognitive function (2097,2098,11373,57332,57333). However, one clinical trial shows that taking a kava supplement providing 120 mg of kavalactones twice daily for 16 weeks increases the risk for memory impairment by 55% when compared with placebo (102086).
Orally, kava may reduce alertness and impair motor coordination in a dose-dependent manner. Some preliminary reports have noted a decline in accuracy of visual attention and slower reaction times after kava ingestion, particularly at higher doses and in combination with alcohol (11373,95926). Population research has also found that ingesting large amounts of kava tea (typically 50 times higher than what is used medicinally in the US) within a 12-hour period before driving increases the odds of being involved in a serious motor vehicle crash resulting in death or serious injury by almost 5-fold when compared to not drinking kava tea (95927). Use of normal doses of kava may also affect the ability to drive or operate machinery, and driving under the influence (DUI) citations have been issued to individuals observed driving erratically after drinking large amounts of kava tea (535). However, in computer-based driving simulator tests, there are no reported adverse effects of kava on performance (95926). Additionally, other research shows that consuming over 4400 mg of kavalactones over a 6-hour kava session does not seem to impair alertness or attention when compared with non-kava drinkers (103867). Similar research using a specific psychometric tool (Brain Gauge) shows that consuming approximately 3680 mg of kavalactones in a 6-hour kava session seems to impair temporal order judgment, which is associated with the brain's ability to track the order of events, when compared with non-kava drinkers. However, it does not seem to impact cognitive domains related to focus, accuracy, timing perception, plasticity, or fatigue when compared with non-kava drinkers (110435).
Ocular/Otic ...Orally, high doses of kava may cause eye irritation (7728). There is one case report of impaired accommodation and convergence, increased pupil diameter, and oculomotor disturbance following a single dose of kava (9920).
Psychiatric ...Apathy has been associated with traditional use of kava at high doses (57313).
Pulmonary/Respiratory ...Orally, kava may cause shortness of breath, possibly due to pulmonary hypertension (6402).
Renal ...Orally, kava may cause acute urinary retention (57349).
General
...Orally, lemon balm seems to be well tolerated in food amounts and larger, medicinal amounts.
Topically, lemon balm seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Wheezing has been rarely reported.
Cardiovascular ...Orally, a case of transient complete atrioventricular block and QT prolongation is reported in a 25-year-old female following the post-workout use of a specific product (Muscle Eze Advanced) containing lemon balm and several other ingredients. Symptoms of fatigue and lightheadedness started 1 week into use of the product. Product discontinuation led to restoration of normal sinus rhythm within 24 hours and normalization of the electrocardiogram within 2 weeks (112556). It is unclear whether this occurrence is due to lemon balm, other ingredients, or the combination.
Dermatologic ...Topically, lemon balm 1% cream applied 5 times daily to cold sores has been associated with two cases of irritation and one case of cold sore exacerbation. However, these effects do not appear to occur more often with lemon balm than with placebo (790).
Gastrointestinal ...Orally, lemon balm might increase appetite in some patients (91732,104433). Nausea, vomiting, and abdominal pain have been reported rarely and do not seem to occur more often than in patients taking placebo (9993).
Neurologic/CNS ...Orally, lemon balm has been reported to cause dizziness and sedation; however, it does not seem to occur more often with lemon balm than placebo (9993,104433). Additionally, other clinical research shows that using lemon balm in conjunction with alcohol does not affect reaction time or influence cognitive performance (19427,19723).
Pulmonary/Respiratory ...Orally, lemon balm has been associated with rare cases of wheezing (9993).
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466). Antenatal magnesium sulfate may also cause nausea and vomiting (60915). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General
...Orally, magnolia seems to be well tolerated.
Most Common Adverse Effects:
Topically: Contact dermatitis.
Dermatologic ...Topically, magnolia bark has been associated with reports of allergic contact dermatitis (92463,92468,95030,110709). In several cases, the use of anti-aging facial creams containing magnolia bark extract was associated with allergic contact dermatitis of the face (92463,92468,95030). In one case, the use of a vaginal gel containing magnolia bark extract was associated with allergic contact dermatitis of the vulva (110709). Symptoms typically resolve with the use of topical corticosteroids and discontinuation of magnolia bark extract (95030,110709). Patch testing suggests that the magnolia bark extract constituents magnolol and honokiol are responsible for this adverse effect (110709).
Endocrine ...In a clinical trial of an oral combination product containing extracts of magnolia and phellodendron, one patient reported thyroid dysfunction (14349). However, it's not known if this side effect is related to magnolia or some other factor.
Gastrointestinal ...In a clinical trial of an oral combination product containing extracts of magnolia and phellodendron, one patient reported heartburn (14349). However, it's not known if this side effect is related to magnolia or some other factor.
Neurologic/CNS ...In a clinical trial of an oral combination product containing extracts of magnolia and phellodendron, one patient reported shaking hands and perilabial numbness. Another patient reported fatigue and headache (14349). However, it's not known if these side effects are related to magnolia or some other factor.
Psychiatric ...In a clinical trial of an oral combination product containing extracts of magnolia and phellodendron, one patient reported sexual dysfunction (14349). However, it's not known if this side effect is related to magnolia or some other factor.
General
...Orally, passion flower is well tolerated.
Most Common Adverse Effects:
Orally: Confusion, dizziness, hypersensitivity, and sedation.
Cardiovascular ...There is a case report involving a 34-year-old female who was hospitalized with severe nausea, vomiting, drowsiness, prolonged QT interval, and episodes of nonsustained ventricular tachycardia following use of passion flower extract tablets (Sedacalm, Bioplus Healthcare), 1500 mg on day 1 and 2000 mg on day 2 to relieve stress. All symptoms resolved within one week after passion flower was discontinued (6251).
Genitourinary ...The alkaloids harman and harmaline, which are sometimes found in small amounts in passion flower, have been reported to have uterine stimulant activity (4,11020,95037).
Hematologic ...Orally, passion flower has been reported to cause epistaxis in one clinical trial (95038). Vasculitis has also been reported with use of a specific herbal product (Relaxir) produced mainly from the fruits of passion flower (6).
Hepatic ...There is debate about whether passion flower contains cyanogenic glycosides. Several related Passiflora species do contain these constituents (3), including Passiflora edulis, which is associated with liver and pancreatic toxicity (7).
Immunologic
...An idiosyncratic hypersensitivity reaction characterized by urticaria and cutaneous vasculitis has been reported in a 77-year-old male with rheumatoid arthritis after taking a specific combination product that included passion flower extract (Naturest) (68308).
It is unclear if these effects were caused by passion flower or other ingredients.
In clinical trials, passion flower has been reported to cause allergy symptoms including sinus irritation; however, the frequency of these events was statistically nonsignificant when compared to treatment with midazolam 15 mg (95038).
Musculoskeletal ...Orally, passion flower has been reported to cause muscle relaxation in a clinical trial (95038).
Neurologic/CNS ...Orally, sedation, dizziness, ataxia, and confusion have been reported in clinical trials. However, these events generally do not necessitate discontinuation (8007,15391,15392,95036,95038). Altered consciousness has been reported with use of a specific herbal product (Relaxir) produced mainly from the fruits of passion flower (6).
General ...Orally, zizyphus fruit extract and powder seem to be well tolerated.
Gastrointestinal ...Orally, zizyphus fruit extract was associated with three cases of mild diarrhea in newborn infants (93306). Zizyphus seed extract was associated with one case of dry mouth and one case of increased bowel movements in a small clinical study (107921).
Neurologic/CNS ...Orally, zizyphus seed extract was associated with two cases of headache in a small clinical study (107921).