Ingredients | Amount Per Serving |
---|---|
(Pyridoxal 5-Phosphate)
|
5 mg |
665 mcg DFE | |
((6S)-5-Methylfolate, (6S)-5-MTHF)
((6S)-5-Methyltetrahydrofolic Acid, Glucosamine Salt)
|
800 mcg |
(Methylcobalamin)
|
500 mcg |
(Bacopa monnieri Whole Plant Extract)
(Bacopa monnieri Proprietary Extract)
|
320 mg |
(Withania somnifera )
(root and leaf)
|
250 mg |
(Gamma-Aminobutyric Acid)
|
100 mg |
Hypromellose, Microcrystalline Cellulose, Stearic Acid (Alt. Name: C18:0), Silica
Below is general information about the effectiveness of the known ingredients contained in the product TrueRecall. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product TrueRecall. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Ashwagandha has been used with apparent safety in doses of up to 1250 mg daily for up to 6 months (3710,11301,19271,90649,90652,90653,97292,101816,102682,102683) (102684,102685,102687,103476,105824,109586,109588,109589,109590). ...when used topically. Ashwagandha lotion has been used with apparent safety in concentrations up to 8% for up to 2 months (111538).
PREGNANCY: LIKELY UNSAFE
when used orally.
Ashwagandha has abortifacient effects (12).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Bacopa has been used safely in clinical trials at a dose of up to 600 mg daily for up to 12 weeks (10058,10059,17946,97605).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Clinical research suggests bacopa extract might be safe to use at a dose of 225 mg daily for up to 6 months or 320 mg daily for up to 14 weeks in children aged 6-14 years (33304,97603,109625).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally or parenterally and appropriately. Folic acid has been safely used in amounts below the tolerable upper intake level (UL). The UL for folic acid is based only on supplemental folic acid and is expressed in mcg folic acid. Dietary folate is not included in UL calculations, as dietary folate consumption has not been associated with adverse effects. The UL for folic acid in adults is 1000 mcg (6241). In cases of megaloblastic anemia resulting from folate deficiency or malabsorption disorders such as sprue, oral doses of 1-5 mg per day can also be used safely until hematologic recovery is documented, as long as vitamin B12 levels are routinely measured (6241,7725,8739).
POSSIBLY SAFE ...when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately, short-term. L-5-MTHF has been used with apparent safety at a dose of 416 mcg daily for 16 weeks (104913,104914) and a dose of 113 mcg daily for 24 weeks (104920). A specific L-5-MTHF product (Metafolin, Eprova) has been used with apparent safety at a dose of 1.3 mg daily for 12 weeks (104912).
POSSIBLY UNSAFE ...when used orally in large doses, long-term. Clinical research shows that taking folic acid daily in doses of 800 mcg to 1200 mcg for 3-10 years significantly increases the risk of developing cancer and adverse cardiovascular effects compared to placebo (12150,13482,16822,17041). Doses above 1 mg per day should also be avoided if possible to prevent precipitation or exacerbation of neuropathy related to vitamin B12 deficiency (6241,6242,6245). However, there is contradictory evidence suggesting that higher doses may not be harmful. There is some evidence that doses of 5 mg per day orally for up to 4 months can be used safely if vitamin B12 levels are routinely measured (7725). Also, other clinical research suggests that folic acid supplementation at doses up to 5 mg, usually in combination with vitamin B12, does not increase the risk of cancer when taken for 2-7 years (91312). Very high doses of 15 mg per day can cause significant central nervous system (CNS) and gastrointestinal side effects (505).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Folic acid has been safely used in children in amounts below the tolerable upper intake level (UL). The ULs for folic acid are based only on supplemental folic acid and are expressed in mcg folic acid. Dietary folate is not included in UL calculations, as dietary folate consumption has not been associated with adverse effects. The UL for children is: 1-3 years of age, 300 mcg; 4-8 years of age, 400 mcg; 9-13 years of age, 600 mcg; 14-18 years of age, 800 mcg (6241).
CHILDREN: POSSIBLY SAFE
when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately.
One clinical study in infants aged 27 days and younger shows that consuming a formula containing L-5-MTHF (Metafolin, Merck & Cie) 10.4 mcg/100 mL daily has been used with apparent safety for up to 12 weeks (104918).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Folic acid 300-400 mcg is commonly used during pregnancy for prevention of neural tube defects (8739). Miscarriage rates and negative impacts on fetal growth have not been shown to increase with peri-conception supplemental folic acid intakes of 4 mg per day (91320,91322). However, other research shows that taking more than 5 mg per day during pregnancy may reduce development of cognitive, emotional, and motor skills in infants (91318). Also, the tolerable upper intake level (UL) of folic acid for pregnant or lactating women is 800 mcg daily for those 14-18 years of age and 1000 mcg daily for those 19 years and older (6241).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately, short-term.
L-5-MTHF has been used with apparent safety at a dose of 416 mcg daily for 16 weeks during lactation. Compared to folic acid, this form seems to further increase the folate concentration of red blood cells, but not breast milk (104913,104914).
LIKELY SAFE ...when used orally in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. GABA has been used with apparent safety in doses of 75 mg to 1.5 grams daily for up to one month in small clinical studies (19361,19363,19369,110134,110135). There is insufficient reliable information available about the safety of GABA when used orally for longer than one month or when used sublingually or intravenously.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally, topically, intravenously, intramuscularly, or intranasally and appropriately. Vitamin B12 is generally considered safe, even in large doses (15,1344,1345,1346,1347,1348,2909,6243,7289,7881)(9414,9416,10126,14392,15765,82832,82949,82860,82864,90386)(111334,111551).
PREGNANCY: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA for vitamin B12 during pregnancy is 2.6 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA of vitamin B12 during lactation is 2.8 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 while breastfeeding.
LIKELY SAFE ...when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of 100 mg daily for adults (15). ...when used parenterally and appropriately. Injectable vitamin B6 (pyridoxine) is an FDA-approved prescription product (15).
POSSIBLY SAFE ...when used orally and appropriately in doses of 101-200 mg daily (6243,8558).
POSSIBLY UNSAFE ...when used orally in doses at or above 500 mg daily. High doses, especially those exceeding 1000 mg daily or total doses of 1000 grams or more, pose the most risk. However, neuropathy can occur with lower daily or total doses (6243,8195). ...when used intramuscularly in high doses and frequency due to potential for rhabdomyolysis (90795).
CHILDREN: LIKELY SAFE
when used orally and appropriately (3094).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in amounts exceeding the recommended dietary allowance (5049,8579,107124,107125,107135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses, long-term (3094).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
A special sustained-release product providing vitamin B6 (pyridoxine) 75 mg daily is FDA-approved for use in pregnancy. Vitamin B6 (pyridoxine) is also considered a first-line treatment for nausea and vomiting in pregnancy by the American College of Obstetrics and Gynecology (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
There is some concern that high-dose maternal vitamin B6 (pyridoxine) can cause neonatal seizures (4609,6397,8197).
LACTATION: LIKELY SAFE
when used orally in doses not exceeding the recommended dietary allowance (RDA) (3094).
The RDA in lactating women is 2 mg daily. There is insufficient reliable information available about the safety of vitamin B6 when used in higher doses in breast-feeding women.
Below is general information about the interactions of the known ingredients contained in the product TrueRecall. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking ashwagandha with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking ashwagandha with antihypertensive drugs might increase the risk of hypotension.
Details
Animal research suggests that ashwagandha might lower systolic and diastolic blood pressure (19279). Theoretically, ashwagandha might have additive effects when used with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, taking ashwagandha might increase the sedative effects of benzodiazepines.
Details
There is preliminary evidence that ashwagandha might have an additive effect with diazepam (Valium) and clonazepam (Klonopin) (3710). This may also occur with other benzodiazepines.
|
Theoretically, taking ashwagandha might increase the sedative effects of CNS depressants.
Details
Ashwagandha seems to have sedative effects. Theoretically, this may potentiate the effects of barbiturates, other sedatives, and anxiolytics (3710).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research shows that ashwagandha extract induces CYP1A2 enzymes (111404).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP3A4 substrates.
Details
In vitro research shows that ashwagandha extract induces CYP3A4 enzymes (111404).
|
Theoretically, taking ashwagandha with hepatotoxic drugs might increase the risk of liver damage.
Details
|
Theoretically, taking ashwagandha might decrease the effects of immunosuppressants.
Details
|
Ashwagandha might increase the effects and adverse effects of thyroid hormone.
Details
Concomitant use of ashwagandha with thyroid hormones may cause additive therapeutic and adverse effects. Preliminary clinical research and animal studies suggest that ashwagandha boosts thyroid hormone synthesis and secretion (19281,19282,97292). In one clinical study, ashwagandha increased triiodothyronine (T3) and thyroxine (T4) levels by 41.5% and 19.6%, respectively, and reduced serum TSH levels by 17.4% from baseline in adults with subclinical hypothyroidism (97292).
|
Theoretically, concurrent use might decrease the effectiveness of both agents.
Details
Bacopa seems to inhibit acetylcholinesterase and might increase acetylcholine levels, which could counteract the effects of anticholinergic drugs (17946). Similarly, anticholinergic drugs might counteract the cholinergic effects of bacopa.
|
Theoretically, bacopa might increase the effects and adverse effects of cevimeline.
Details
In one case, a 58-year-old female taking cevimeline long-term for Sjogren syndrome experienced hyperhidrosis, malaise, nausea, and tachycardia shortly after taking a single dose of bacopa. Symptoms resolved after two days. Cevimeline is metabolized by cytochrome P450 (CYP) 2D6 and CYP3A4, and researchers theorize that bacopa may have inhibited these isoenzymes (109627). However, it is unclear if bacopa causes clinically significant inhibition of either CYP2D6 or CYP3A4.
|
Theoretically, concurrent use of bacopa with other cholinergic drugs might have additive effects.
Details
Bacopa seems to inhibit acetylcholinesterase and might increase acetylcholine levels (17946). Theoretically, this could result in additive cholinergic effects when used with cholinergic drugs.
|
Theoretically, bacopa might increase the levels and adverse effects of CYP1A2 substrates.
Details
|
Theoretically, bacopa might increase the levels and adverse effects of CYP2C19 substrates.
Details
In vitro evidence suggests that bacopa extract can moderately and non-competitively inhibit CYP2C19 enzymes (97606). It is not known whether this is clinically significant.
|
Theoretically, bacopa might increase the levels and adverse effects of CYP2C9 substrates.
Details
|
Theoretically, bacopa might increase the levels and adverse effects of CYP3A4 substrates.
Details
|
Theoretically, bacopa might have additive effects when used with thyroid hormone.
Details
Animal research suggests that bacopa increases thyroxine (T4) levels in mice by about 40% (33286).
|
Theoretically, high doses of folic acid might increase the toxicity of 5-fluorouracil.
Details
Increases in gastrointestinal side effects of 5-fluorouracil, such as stomatitis and diarrhea, have been described in two clinical studies when leucovorin, a form of folic acid, was administered with 5-fluorouracil (16845).
|
Use of high-dose folic acid might contribute to capecitabine toxicity.
Details
Clinical research suggests that higher serum folate levels are associated with an increased risk for moderate or severe toxicity during capecitabine-based treatment for colorectal cancer (105402). Additionally, in one case report, taking folic acid 15 mg daily might have contributed to increased toxicity, including severe diarrhea, vomiting, edema, hand-foot syndrome, and eventually death, in a patient prescribed capecitabine (16837).
|
Folic acid might reduce the efficacy of methotrexate as a cancer treatment when given concurrently.
Details
Methotrexate exerts its cytotoxic effects by preventing conversion of folic acid to the active form needed by cells. There is some evidence that folic acid supplements reduce the efficacy of methotrexate in the treatment of acute lymphoblastic leukemia, and theoretically they could reduce its efficacy in the treatment of other cancers (9420). Advise cancer patients to consult their oncologist before using folic acid supplements. In patients treated with long-term, low-dose methotrexate for rheumatoid arthritis (RA) or psoriasis, folic acid supplements can reduce the incidence of side effects, without reducing efficacy (768,2162,4492,4493,4494,4546,9369).
|
Folic acid might have antagonistic effects on phenobarbital and increase the risk for seizures.
Details
|
Folic acid might reduce serum levels of phenytoin in some patients.
Details
Folic acid may be a cofactor in phenytoin metabolism (4471). Folic acid, in doses of 1 mg daily or more, can reduce serum levels of phenytoin in some patients (4471,4477,4531,4536). Increases in seizure frequency have been reported. If folic acid supplements are added to established phenytoin therapy, monitor serum phenytoin levels closely. If phenytoin and folic acid are started at the same time and continued together, adverse changes in phenytoin pharmacokinetics are avoided (4471,4472,4473,4531). Note that phenytoin also reduces serum folate levels.
|
Folic acid might have antagonistic effects on primidone and increase the risk for seizures.
Details
|
Folic acid might antagonize the effects of pyrimethamine.
Details
Folic acid can antagonize the antiparasitic effects of pyrimethamine against toxoplasmosis and Pneumocystis carinii pneumonia. Folic acid doesn't antagonize the effects of pyrimethamine in the treatment of malaria, because malarial parasites cannot use exogenous folic acid. Use folinic acid as an alternative to folic acid when indicated (9380).
|
Theoretically, taking GABA with antihypertensive drugs might increase the risk of hypotension.
Details
Some clinical research shows that GABA can decrease blood pressure in patients with hypertension (19367).
|
Theoretically, GABA might have additive sedative effects when used in conjunction with CNS depressants. However, it is unclear if this concern is clinically relevant.
Details
Endogenous GABA has well-established relaxant effects (51152) and GABA(A) receptors have an established physiological role in sleep (51143). However, the effects of GABA supplements are unclear, as it is unknown whether exogenous GABA crosses the blood-brain barrier (51120,51153,90570). Although there have been limited reports of drowsiness or tiredness with GABA supplements (5115,19364), these effects have not been widely reported in clinical studies. Additionally, intravenous GABA 0.1-1 mg/kg has been shown to induce anxiety in a dose-dependent manner (5116).
|
Theoretically, vitamin B6 might increase the photosensitivity caused by amiodarone.
Details
|
Theoretically, vitamin B6 may have additive effects when used with antihypertensive drugs.
Details
Research in hypertensive rats shows that vitamin B6 can decrease systolic blood pressure (30859,82959,83093). Similarly, clinical research in patients with hypertension shows that taking high doses of vitamin B6 may reduce systolic and diastolic blood pressure, possibly by reducing plasma levels of epinephrine and norepinephrine (83091).
|
Vitamin B6 may increase the metabolism of levodopa when taken alone, but not when taken in conjunction with carbidopa.
Details
Vitamin B6 (pyridoxine) enhances the metabolism of levodopa, reducing its clinical effects. However, this interaction does not occur when carbidopa is used concurrently with levodopa (Sinemet). Therefore, it is not likely to be a problem in most people (3046).
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenobarbital.
Details
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenytoin.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product TrueRecall. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, ashwagandha seems to be well-tolerated.
Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal upset, nausea, and vomiting. However, these adverse effects do not commonly occur with typical doses.
Serious Adverse Effects (Rare):
Orally: Some case reports raise concerns about acute hepatitis, acute liver failure, hepatic encephalopathy, the need for liver transplantation, and death due to liver failure with ashwagandha treatment.
Dermatologic ...Orally, dermatitis has been reported in three of 42 patients in a clinical trial (19276).
Endocrine ...A case report describes a 73-year-old female who had taken an ashwagandha root extract (unspecified dose) for 2 years to treat hypothyroidism which had been previously managed with levothyroxine. The patient was diagnosed with hyperthyroidism after presenting with supraventricular tachycardia, chest pain, tremor, dizziness, fatigue, irritability, hair thinning, and low thyroid stimulating hormone (TSH) levels. Hyperthyroidism resolved after discontinuing ashwagandha (108745). Additionally, an otherwise healthy adult who was taking ashwagandha extract orally for 2 months experienced clinical and laboratory-confirmed thyrotoxicosis. Thyrotoxicosis resolved 50 days after discontinuing ashwagandha, without other treatment (114111).
Gastrointestinal ...Orally, large doses may cause gastrointestinal upset, diarrhea, and vomiting secondary to irritation of the mucous and serous membranes (3710). When taken orally, nausea and abdominal pain (19276,110490,113609) and gastritis and flatulence (90651) have been reported.
Genitourinary ...In one case report, a 28-year-old male with a decrease in libido who was taking ashwagandha 5 grams daily over 10 days subsequently experienced burning, itching, and skin and mucous membrane discoloration of the penis, as well as an oval, dusky, eroded plaque (3 cm) with erythema on the glans penis and prepuce (32537).
Hepatic ...Orally, ashwagandha in doses of 154 mg to 20 grams daily has played a role in several case reports of cholestatic, hepatocellular, and mixed liver injuries. In most of these cases, other causes of liver injury were excluded, and liver failure did not occur. Symptoms included jaundice, pruritus, malaise, fatigue, lethargy, weight loss, nausea, diarrhea, abdominal pain and distension, stool discoloration, and dark urine. Symptom onset was typically 5-180 days from first intake, although in some cases onset occurred after more than 12 months of use (102686,107372,110490,110491,111533,111535,112111,113610,114113). Laboratory findings include elevated aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase, serum bilirubin, and international normalized ratio (INR) (112111,113610,114113). In most cases, liver enzymes normalized within 1-5 months after discontinuation of ashwagandha (102686,107372,110491,111535,112111,114113). However, treatment with corticosteroids, lactulose, ornithine, ursodeoxycholic acid, and plasmapheresis, among other interventions, was required in one case (111533). Rarely, use of oral ashwagandha has been reported to cause hepatic encephalopathy, liver failure requiring liver transplantation, and acute-on-chronic liver failure resulting in death (110490,113610).
Neurologic/CNS ...Orally, ashwagandha has been reported to cause drowsiness (110492,113609). Headache, neck pain, and blurry vision have been reported in a 47-year-old female taking ashwagandha, cannabis, and venlafaxine. Imaging over the course of multiple years and hospital admissions indicated numerous instances of intracranial hemorrhage and multifocal stenosis of intracranial arteries, likely secondary to reversible cerebral vasoconstriction syndrome (RCVS) (112113). It is unclear whether the RCVS and subsequent intracranial hemorrhages were precipitated by ashwagandha, cannabis, or venlafaxine.
General
...Orally, bacopa is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, diarrhea, dry mouth, headache, nausea.
Cardiovascular ...Orally, bacopa has been reported to cause palpitations (10058).
Gastrointestinal ...Orally, bacopa has been reported to cause abdominal cramps, abdominal pain, bloating, decreased appetite, diarrhea, dry mouth, excessive thirst, flatulence, indigestion, nausea, and increased stool frequency. Rates of adverse gastrointestinal events have ranged from 12% to 30% (10058,17946,33295,97605,109623,111520).
Musculoskeletal ...Orally, bacopa has been reported to cause arthralgia, muscle fatigue, and myopathy (10058,109623,111522). In one case, a 21-year-old male experienced progressive proximal weakness, muscle atrophy, weight loss, dark urine, and elevated serum markers of myopathy, with muscle biopsy showing immune-mediated necrotizing myopathy, after taking a supplement containing bacopa for 5 years (111522).
Neurologic/CNS ...Orally, bacopa has been reported to cause drowsiness, headache, insomnia, and vivid dreams (10058,10059,17946,109623).
Other ...Orally, bacopa has been reported to cause flu like symptoms and fatigue (10058,97605,111520).
General
...Orally, folic acid is generally well-tolerated in amounts found in fortified foods, as well as in supplemental doses of less than 1 mg daily.
Most Common Adverse Effects:
Orally: At doses of 5 mg daily - abdominal cramps, diarrhea, and rash. At doses of 15 mg daily - bitter taste, confusion, hyperactivity, impaired judgment, irritability, nausea, sleep disturbances.
Serious Adverse Effects (Rare):
Orally: Cancer (long-term use), cardiovascular complications, liver injury, seizures.
All ROAs: Allergic reactions such as bronchospasm and anaphylactic shock.
Cardiovascular ...There is some concern that high oral doses of folic acid might increase the risk of adverse cardiovascular outcomes. Clinical research shows that taking doses of 800 mcg to 1.2 mg/day might increase the risk of adverse cardiovascular events in patients with cardiovascular disease (12150,13482). High doses of folic acid might promote cell growth by providing large amounts of the biochemical precursors needed for cell replication. Overgrowth of cells in the vascular wall might increase the risk of occlusion (12150). Although some research suggests that use of folic acid might increase the need for coronary revascularization, analysis of multiple studies suggests that taking folic acid up to 5 mg/day for up to 24 months does not appear to affect coronary revascularization risk (90798).
Dermatologic ...Orally, folic acid 1-5 mg daily can cause rash (7225,90375,91319). Folic acid 15 mg daily can sometimes cause allergic skin reactions (15).
Gastrointestinal ...Orally, folic acid 5 mg daily can cause abdominal cramps and diarrhea (7225). Folic acid 15 mg daily can sometimes cause nausea, abdominal distention, flatulence, and bitter taste in the mouth (15). In children aged 6-30 months at risk of malnourishment, taking a nutritional supplement (Nutriset Ltd) enriched in folic acid 75-150 mcg daily, with or without vitamin B 12 0.9-1.8 mcg daily, for 6 months increases the likelihood of having persistent diarrhea (90391).
Hepatic ...Liver dysfunction, with jaundice and very high liver enzymes, occurred in a 30-year-old pregnant patient with severe nausea and vomiting taking a folic acid supplement (Folic acid, Nature Made) 400 mcg daily. Based on the timing of ingestion, the lack of other etiological factors, a positive drug-induced lymphocyte stimulation test, and liver function normalization once the folic acid had been stopped, the authors suggest the folic acid supplement was the cause. However, the authors did not determine which substance in the folic acid supplement was responsible and therefore it cannot be determined that folic acid itself was the cause (91309).
Neurologic/CNS ...Orally, folic acid 15 mg daily can sometimes cause altered sleep patterns, vivid dreaming, irritability, excitability, hyperactivity, confusion, and impaired judgment (15). Large doses of folic acid can also precipitate or exacerbate neuropathy in people deficient in vitamin B12 (6243). Use of folic acid for undiagnosed anemia has masked the symptoms of pernicious anemia, resulting in lack of treatment and eventual neurological damage (15). Patients should be warned not to self-treat suspected anemia. There is also some concern that consuming high amounts of folic acid from the diet and/or supplements might worsen cognitive decline in older people. A large-scale study suggests that people over 65 years of age, who consume large amounts of folic acid (median of 742 mcg/day), have cognitive decline at a rate twice as fast as those consuming smaller amounts (median of 186 mcg/day). It's not known if this is directly attributable to folic acid. It is theorized that it could be due to folic acid masking a vitamin B12 deficiency. Vitamin B12 deficiency is associated with cognitive decline (13068). More evidence is needed to determine the significance of this finding. For now, suggest that most patients aim for the recommended folic acid intake of 400 mcg/day.
Oncologic
...There is some concern that high dose folic acid might increase the risk of cancer, although research is unclear and conflicting.
A large-scale population study suggests that taking a multivitamin more than 7 times per week with a separate folic acid supplement significantly increased the risk of prostate cancer (15607). Clinical research also shows that taking folic acid 1 mg daily increase the absolute risk of prostate cancer by 6.4% over a 10-year period when compared with placebo. However, those with a higher baseline dietary intake of folic acid had a lower rate of prostate cancer, but this was not statistically significant. Also, folate and folic acid intake in patients with prostate cancer is not associated with the risk of prostate cancer recurrence after radical prostatectomy (91317). However, it is possible that discrepancies are due to dietary folate versus folic acid intake. Large analyses of population studies suggest that while dietary folate/folic acid is not associated with prostate cancer, high blood folate/folic acid increases the risk of prostate cancer (50411,91316).
Additional clinical research shows that taking folic acid 800 mcg daily, in combination with vitamin B12 400 mcg, significantly increases the risk of developing cancer, especially lung cancer, and all-cause mortality in patients with cardiovascular disease (17041). However, this may be due to vitamin B12, as other observational research found that higher vitamin B12 levels are linked with an increased risk for lung cancer (102383). Meta-analyses of large supplementation trials of folic acid at levels between 0.5-2.5 mg daily also suggest an increased risk of cancer (50497,110318). Also, in elderly individuals, taking folic acid 400 mcg daily with vitamin B12 500 mcg daily increased the risk of cancer. The risk was highest in individuals over 80 years of age and in females and mainly involved gastrointestinal and colorectal cancers (90393).
Not all researchers suspect that high intake of folic acid supplements might be harmful. Some research suggests that increased dietary intake of folic acid, along with other nutrients, might be protective against cancer (16822). A meta-analysis of multiple clinical trials suggests that folic acid supplementation studies with folic acid levels between 500 mcg to 50 mg/day does not increase the risk of general or site-specific cancer for up to 7 years (91312,91321). Also, a post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378).
Psychiatric ...Orally, folic acid 15 mg daily can sometimes cause exacerbation of seizure frequency and psychotic behavior (15).
Pulmonary/Respiratory ...Folic acid use in late pregnancy has been associated with an increased risk of persistent and childhood asthma at 3. 5 years in population research (50380). When taken pre-pregnancy or early in pregnancy, population research has not found an association with increased risk of asthma or allergies in childhood (90799,103979). Folic acid use in pregnancy has been associated with a slightly increased risk of wheeze and lower respiratory tract infections up to 18 months of age in population research (50328).
General
...Orally, GABA seems to be generally well tolerated.
Sublingually, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Drowsiness, gastric upset, minor throat burning, muscle weakness, and nausea.
Cardiovascular ...Intravenously, GABA can cause dose-related increases in blood pressure and pulse (5116).
Gastrointestinal ...Orally, minor throat burning has been associated with GABA in one study (5115). In another study in which GABA was administered with phosphatidylserine, one patient experienced severe gastric distress, two patients reported moderate nausea, and one reported constipation (19364). Children with cerebral palsy taking GABA experienced nausea and decreased appetite (19362).
Genitourinary ...In one study, one patient treated with oral GABA and phosphatidylserine reported transient amenorrhea (19364).
Musculoskeletal ...Orally, minor adverse effects associated with GABA included muscle weakness (5115).
Neurologic/CNS ...Orally, GABA may cause drowsiness or tiredness (5115,19364). Four children with cerebral palsy taking GABA had convulsions, and an unspecified number experienced motor restlessness. However, causality of these adverse effects was not clear, and the dose of GABA was not specified (19362). Intravenously, GABA 50 mg has been associated with a "lack of alertness" in healthy female volunteers (51159).
Psychiatric ...Intravenously, GABA 0. 1-1.0 mg/kg has been shown to induce anxiety, dysphoria, and mood disturbances in a dose-dependent manner (5116).
Other ...In one study, patients taking GABA experienced a slight warming of the body (19370).
General
...Orally, intramuscularly, and topically, vitamin B12 is generally well-tolerated.
Most Common Adverse Effects:
Intramuscular: Injection site reactions.
Serious Adverse Effects (Rare):
Intramuscularly: Severe hypokalemia has been rarely linked with correction of megaloblastic anemia with vitamin B12.
Cardiovascular ...In human clinical research, an intravenous loading dose of folic acid, vitamin B6, and vitamin B12, followed by daily oral administration after coronary stenting, increased restenosis rates (12150). Hypertension following intravenous administration of hydroxocobalamin has been reported in human research (82870,82864).
Dermatologic
...Orally or intramuscularly, vitamin B12 can cause allergic reactions such as rash, pruritus, erythema, and urticaria.
Theoretically, allergic reactions might be caused by the cobalt within the vitamin B12 molecule (82864,90373,90381,103974). In one case report, oral methylcobalamin resulted in contact dermatitis in a 59-year-old Japanese female with a cobalt allergy (103974). In another case report, a 69-year-old female developed a symmetrical erythematous-squamous rash for 5 years after oral vitamin B12 supplementation for 10 years. A patch test confirmed that the systemic allergic dermatitis was due to vitamin B12 supplementation, which resolved 3 months after discontinuation (114578).
Vitamin B12 (intramuscular or oral) has also been associated with at least 19 cases of acneiform eruptions which resolved upon discontinuation of vitamin B12 (90365,90369,90388). High-dose vitamin B12 (20 mcg daily) and vitamin B6 (80 mg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may last up to four months after the supplement is stopped and can be treated with systemic corticosteroids and topical therapy (10998,82870,82871).
Gastrointestinal ...Intravenously, vitamin B12 (hydroxocobalamin) 2. 5-10 grams can cause nausea and dysphagia (82864).
Genitourinary ...Intravenously, vitamin B12 (hydroxocobalamin) 5-15 grams has been associated with chromaturia in clinical research (82870,82871,112282,112264).
Hematologic ...According to case report data, the correction of megaloblastic anemia with vitamin B12 may result in fatal hypokalemia (82914).
Musculoskeletal ...According to case report data, correction of megaloblastic anemia with vitamin B12 has precipitated gout in susceptible individuals (82879).
Neurologic/CNS ...Treatment with vitamin B12 has been rarely associated with involuntary movements in infants with vitamin B12 deficiency (90370,90385,90397). In some cases these adverse reactions were misdiagnosed as seizures or infantile tremor syndrome (90370,90385). These adverse reactions presented 2-5 days after treatment with vitamin B12 and resolved once vitamin B12 was discontinued (90370,90385,90397).
Oncologic ...Although some epidemiological research disagrees (9454), most research has found that elevated plasma levels of vitamin B12 are associated with an increased risk of various types of cancer, including lung and prostate cancers and solid tumors (50411,102383,107743). One study found, when compared with blood levels of vitamin B12 less than 1000 ng/mL, plasma vitamin B12 levels of at least 1000 ng/mL was strongly associated with the occurrence of solid cancer (107743). It is unclear if increased intake of vitamin B12, either through the diet or supplementation, directly affects the risk of cancer. It is possible that having cancer increases the risk of vitamin B12 elevation. However, one observational study has found that the highest quintile of dietary intake of vitamin B12 is associated with a 75% increased incidence of developing esophageal cancer when compared with the lowest quintile in never drinkers, but not drinkers (107147).
Renal ...There is a case report of oxalate nephropathy in a 54-year-old male which was determined to be related to the use of intravenous hydroxocobalamin as treatment for cyanide poisoning. Intermittent hemodialysis was started 5 days after admission, along with a low-oxalate diet, oral calcium acetate, and pyridoxine 5 mg/kg daily (107148). A review of the use of intravenous hydroxocobalamin for suspected cyanide poisoning in 21 intensive care units in France between 2011 and 2017 resulted in a 60% increased odds of acute kidney injury and a 77% increased odds of severe acute kidney injury in the first week. However, biopsies were not conducted and a direct link with use of hydroxocobalamin could not be made (107139).
Other ...Several studies have found that higher vitamin B12 levels may be associated with increased mortality or decreased survival rates in hospitalized elderly patients (82889,82812,82857,82895). Human research has also found a positive correlation between vitamin B12 status and all-cause mortality in Pima Indians with diabetes (82863).
General
...Orally or by injection, vitamin B6 is well tolerated in doses less than 100 mg daily.
Most Common Adverse Effects:
Orally or by injection: Abdominal pain, allergic reactions, headache, heartburn, loss of appetite, nausea, somnolence, vomiting.
Serious Adverse Effects (Rare):
Orally or by injection: Sensory neuropathy (high doses).
Dermatologic ...Orally, vitamin B6 (pyridoxine) has been linked to reports of skin and other allergic reactions and photosensitivity (8195,9479,90375). High-dose vitamin B6 (80 mg daily as pyridoxine) and vitamin B12 (20 mcg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may persist for up to 4 months after the supplement is stopped, and may require treatment with systemic corticosteroids and topical therapy (10998).
Gastrointestinal ...Orally or by injection, vitamin B6 (pyridoxine) can cause nausea, vomiting, heartburn, abdominal pain, mild diarrhea, and loss of appetite (8195,9479,16306,83064,83103,107124,107127,107135). In a clinical trial, one patient experienced infectious gastroenteritis that was deemed possibly related to taking vitamin B6 (pyridoxine) orally up to 20 mg/kg daily (90796). One small case-control study has raised concern that long-term dietary vitamin B6 intake in amounts ranging from 3.56-6.59 mg daily can increase the risk of ulcerative colitis (3350).
Hematologic ...Orally or by injection, vitamin B6 (pyridoxine) can cause decreased serum folic acid concentrations (8195,9479). One case of persistent bleeding of unknown origin has been reported in a clinical trial for a patient who used vitamin B6 (pyridoxine) 100 mg twice daily on days 16 to 35 of the menstrual cycle (83103). It is unclear if this effect was due to vitamin B6 intake.
Musculoskeletal ...Orally or by injection, vitamin B6 (pyridoxine) can cause breast soreness or enlargement (8195).
Neurologic/CNS ...Orally or by injection, vitamin B6 (pyridoxine) can cause headache, paresthesia, and somnolence (8195,9479,16306). Vitamin B6 (pyridoxine) can also cause sensory neuropathy, which is related to daily dose and duration of intake. Doses exceeding 1000 mg daily or total doses of 1000 grams or more pose the most risk, although neuropathy can occur with lower daily or total doses as well (8195). The mechanism of the neurotoxicity is unknown, but is thought to occur when the liver's capacity to phosphorylate pyridoxine via the active coenzyme pyridoxal phosphate is exceeded (8204). Some researchers recommend taking vitamin B6 as pyridoxal phosphate to avoid pyridoxine neuropathy, but its safety is unknown (8204). Vitamin B6 (pyridoxine) neuropathy is characterized by numbness and impairment of the sense of position and vibration of the distal limbs, and a gradual progressive sensory ataxia (8196,10439). The syndrome is usually reversible with discontinuation of pyridoxine at the first appearance of neurologic symptoms. Residual symptoms have been reported in patients taking more than 2 grams daily for extended periods (8195,8196). Tell patients daily doses of 100 mg or less are unlikely to cause problems (3094).
Oncologic ...In females, population research has found that a median intake of vitamin B6 1. 63 mg daily is associated with a 3.6-fold increased risk of rectal cancer when compared with a median intake of 1.05 mg daily (83024). A post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378). Also, in patients with nasopharyngeal carcinoma, population research has found that consuming at least 8.6 mg daily of supplemental vitamin B6 during treatment was associated with a lower overall survival rate over 5 years, as well as a reduced progression-free survival, when compared with non-users and those with intakes of up to 8.6 mg daily (107134).