Ingredients | Amount Per Serving |
---|---|
Ginkgo Phosphatidylserine (PS) Complex
(a proprietary blend of)
|
360 mg |
(Ginkgo )
(leaf)
|
|
Ginkgo Phosphatidylserine (PS) Complex
(patented)
|
|
Flavone Glycosides
|
64.8 mg |
Terpene Lactones
|
16.2 mg |
Energy
|
4 Kcal |
Total Fat
|
0.4 Gram(s) |
Saturated Fat
|
0.2 Gram(s) |
Trans Fat
|
0 Gram(s) |
Carbohydrates
|
0 Gram(s) |
Sugar
|
0 Gram(s) |
Protein
|
0.2 Gram(s) |
(Na)
|
0.4 mg |
Cellulose, Gelatin, Magnesium Stearate (Alt. Name: Mg Stearate), Silicon Dioxide (Alt. Name: SiO2)
Below is general information about the effectiveness of the known ingredients contained in the product Extra Memory Formula. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Extra Memory Formula. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Standardized ginkgo leaf extracts have been used safely in trials lasting for several weeks up to 6 years (1514,1515,3461,5717,5718,6211,6212,6213,6214,6215)(6216,6222,6223,6224,6225,6490,14383,14499,16634,16635)(16636,16637,17402,17716,17718,87794,87819,87826,87848,87864)(87888,87897,87901,87904,89701,89707,107359,107360). There have been some reports of arrhythmias associated with ginkgo leaf extract. However, it is not yet clear if ginkgo might cause arrhythmia (105253,105254). There is some concern about toxic and carcinogenic effects seen in animals exposed to a ginkgo leaf extract containing 31.2% flavonoids, 15.4% terpenoids, and 10.45 ppm ginkgolic acid, in doses of 100 to 2000 mg/kg five times per week for 2 years (18272). However, the clinical relevance of this data for humans, using typical doses, is unclear. The content of the extract used is not identical to that commonly used in supplement products, and the doses studied are much higher than those typically used by humans. A single dose of 50 mg/kg in rats is estimated to be equivalent to a single dose of about 240 mg in humans (18272).
POSSIBLY SAFE ...when used intravenously, short-term. A standardized ginkgo leaf extract called EGb 761 ONC has been safely administered intravenously for up to 14 days (9871,9872,107360,107452). A Chinese preparation containing ginkgo leaf extract and dipyridamole has been safely administered intravenously for up to 30 days (102881,102882). ...when applied topically, short-term. There was no dermal irritation during a 24-hour patch test using the leaf extract, and no sensitization with repeat applications (112946). When used topically in cosmetics, extracts of ginkgo leaves are reported to be safe, but there is insufficient data to determine the safety of nut and root extracts, and isolated biflavones and terpenoids (112946).
POSSIBLY UNSAFE ...when the roasted seed or crude ginkgo plant is used orally. Consuming more than 10 roasted seeds per day can cause difficulty breathing, weak pulse, seizures, loss of consciousness, and shock (8231,8232). Crude ginkgo plant parts can exceed concentrations of 5 ppm of the toxic ginkgolic acid constituents and can cause severe allergic reactions (5714).
LIKELY UNSAFE ...when the fresh ginkgo seed is used orally. Fresh seeds are toxic and potentially deadly (11296).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
There is concern that ginkgo might have labor-inducing and hormonal effects. There is also concern that the antiplatelet effects of ginkgo could prolong bleeding time if taken around the time of labor and delivery (15052). Theoretically, ginkgo might adversely affect pregnancy outcome; avoid using during pregnancy.
LACTATION:
Insufficient reliable information available; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term (87790,89708).
A specific ginkgo dried extract (Ginko T.D., Tolidaru Pharmaceuticals), has been safely used in doses of 80-120 mg daily for 6 weeks in children aged 6-14 years (17112,95669). Another specific combination product containing ginkgo leaf extract and American ginseng extract (AD-FX, CV Technologies, Canada) has also been safely used in children aged 3-17 years for up to 4 weeks (8235).
CHILDREN: LIKELY UNSAFE
when ginkgo seed is used orally.
The fresh seeds have caused seizures and death in children (8231,11296).
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
Below is general information about the interactions of the known ingredients contained in the product Extra Memory Formula. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, ginkgo might decrease the levels and clinical effects of alprazolam.
Details
In clinical research, ginkgo extract (Ginkgold) 120 mg twice daily seems to decrease alprazolam levels by about 17%. However, ginkgo does not appear to decrease the elimination half-life of alprazolam. This suggests that ginkgo is more likely to decrease absorption of alprazolam rather than induce hepatic metabolism of alprazolam (11029).
|
Ginkgo has been shown to increase the risk of bleeding in some people when taken with warfarin. Theoretically, ginkgo might increase the risk of bleeding if used with other anticoagulant or antiplatelet drugs.
Details
Several pharmacodynamic studies suggest that ginkgo inhibits platelet aggregation. It is thought that the ginkgo constituent, ginkgolide B, displaces platelet-activating factor (PAF) from its binding sites, decreasing blood coagulation (6048,9760). Several case reports have documented serious bleeding events in patients taking ginkgo (244,578,579,8581,13002,13135,13179,13194,14456,87868). However, population and clinical studies have produced mixed results. Some evidence shows that short-term use of ginkgo leaf does not significantly reduce platelet aggregation and blood clotting (87732). A study in healthy males who took a specific ginkgo leaf extract (EGb 761) 160 mg twice daily for 7 days found no change in prothrombin time (12114). An analysis of a large medical record database suggests that ginkgo increases the risk of a bleeding adverse event by 38% when taken concurrently with warfarin (91326). It has been suggested that ginkgo has to be taken for at least 2-3 weeks to have a significant effect on platelet aggregation (14811). However, a meta-analysis of 18 studies using standardized ginkgo extracts, 80-480 mg daily for up to 32 weeks, did not find a significant effect on platelet aggregation, fibrinogen concentration, or PT/aPTT (17179). In addition, a single dose of ginkgo plus clopidogrel (14811) or ticlopidine does not seem to significantly increase bleeding time or platelet aggregation (17111,87846). Also, taking ginkgo leaf extract daily for 8 days in conjunction with rivaroxaban does not affect anti-factor Xa activity; however, this study did not evaluate bleeding time (109526).
|
Theoretically, ginkgo might reduce the effectiveness of anticonvulsants.
Details
Ginkgo seeds contain ginkgotoxin. Large amounts of ginkgotoxin can cause neurotoxicity and seizure. Ginkgotoxin is present in much larger amounts in ginkgo seeds than leaves (8232). Ginkgo leaf extract contains trace amounts of ginkgotoxin. The amount of ginkgotoxin in ginkgo leaf and leaf extract seems unlikely to cause toxicity (11296). However, there are anecdotal reports of seizure occurring after use of ginkgo leaf both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090).
|
Theoretically, taking ginkgo with antidiabetes drugs might alter the response to antidiabetes drugs.
Details
Ginkgo leaf extract seems to alter insulin secretion and metabolism, and might affect blood glucose levels in people with type 2 diabetes (5719,14448,103574). The effect of ginkgo seems to differ depending on the insulin and treatment status of the patient. In diet-controlled diabetes patients with hyperinsulinemia, taking ginkgo does not seem to significantly affect insulin or blood glucose levels. In patients with hyperinsulinemia who are treated with oral hypoglycemic agents, taking ginkgo seems to decrease insulin levels and increase blood glucose following an oral glucose tolerance test. Researchers speculate that this could be due to ginkgo-enhanced hepatic metabolism of insulin. In patients with pancreatic exhaustion, taking ginkgo seems to stimulate pancreatic beta-cells, resulting in increased insulin and C-peptide levels, but with no significant change in blood glucose levels in response to an oral glucose tolerance test (14448).
|
Theoretically, ginkgo might decrease the levels and clinical effects of atorvastatin.
Details
In humans, intake of ginkgo extract appears to increase atorvastatin clearance, reducing the area under the curve of atorvastatin by 10% to 14% and the maximum concentration by 29%. However, this interaction does not appear to affect cholesterol synthesis and absorption (89706). Further, a model in rats with hyperlipidemia suggests that administering ginkgo extract does not impact blood levels of atorvastatin and leads to lower total cholesterol, low-density lipoprotein cholesterol, and triglycerides when compared with rats given atorvastatin alone (111331).
|
Theoretically, ginkgo might increase levels of drugs metabolized by CYP1A2.
Details
|
Theoretically, ginkgo might decrease levels of drugs metabolized by CYP2C19.
Details
Some clinical research shows that a specific ginkgo leaf extract (Remembrance, Herbs Product LTD) 140 mg twice daily can induce CYP2C19 enzymes and potentially decrease levels of drugs metabolized by these enzymes (13108). However, other clinical research shows that taking ginkgo 120 mg twice daily for 12 days has no effect on levels of drugs metabolized by CYP2C19 (87824).
|
Theoretically, ginkgo might increase levels of drugs metabolized by CYP2C9.
Details
In vitro, a specific standardized extract of ginkgo leaf (EGb 761) inhibits CYP2C9 activity (11026,12061,14337). The terpenoid (ginkgolides) and flavonoid (quercetin, kaempferol, etc.) constituents seem to be responsible for this effect. Most ginkgo extracts contain some amount of these constituents. Therefore, other ginkgo leaf extracts might also inhibit the CYP2C9 enzyme. However, clinical research suggests that ginkgo might not have a significant effect on CYP2C9 in humans. Ginkgo does not seem to significantly affect the pharmacokinetics of CYP2C9 substrates diclofenac or tolbutamide.
|
Theoretically, ginkgo might decrease levels of drugs metabolized by CYP3A4.
Details
There is conflicting evidence about whether ginkgo induces or inhibits CYP3A4 (1303,6423,6450,11026,87800,87805,111330). Ginkgo does not appear to affect hepatic CYP3A4 (11029). However, it is not known if ginkgo affects intestinal CYP3A4. Preliminary clinical research suggests that taking ginkgo does not significantly affect levels of donepezil, lopinavir, or ritonavir, which are all CYP3A4 substrates (11027,87800,93578). Other clinical research also suggests ginkgo does not significantly affect CYP3A4 activity (10847). However, there are two case reports of decreased efavirenz concentrations and increased viral load in patients taking ginkgo. It is suspected that terpenoids from the ginkgo extract reduced drug levels by inducing cytochrome P450 3A4 (CYP3A4) (16821,25464).
|
Theoretically, ginkgo might decrease the levels and clinical effects of efavirenz.
Details
There are two case reports of decreased efavirenz concentrations and increased viral load in patients taking ginkgo. In one case, an HIV-positive male experienced over a 50% decrease in efavirenz levels over the course of 14 months while taking ginkgo extract. HIV-1 RNA copies also increased substantially, from less than 50 to more than 1500. It is suspected that terpenoids from the ginkgo extract reduced drug levels by inducing cytochrome P450 3A4 (CYP3A4) (16821). In another case report, a patient stable on antiviral therapy including efavirenz for 10 years, had an increase in viral load from <50 copies/mL to 1350 copies/mL after 2 months of taking a combination of supplements including ginkgo. After stopping ginkgo, the viral load was again controlled with the same antiviral therapy regimen (25464).
|
Theoretically, ginkgo might increase the risk of bleeding when used with ibuprofen.
Details
Ginkgo might have antiplatelet effects and has been associated with several case reports of spontaneous bleeding. In one case, a 71-year-old male had taken a specific ginkgo extract (Gingium, Biocur) 40 mg twice daily for 2.5 years. About 4 weeks after starting ibuprofen 600 mg daily he experienced a fatal intracerebral hemorrhage (13179). However, the antiplatelet effects of ginkgo have been questioned. A meta-analysis and other studies have not found a significant antiplatelet effect with standardized ginkgo extracts, 80 mg to 480 mg taken daily for up to 32 weeks (17179).
|
Theoretically, taking ginkgo with oral, but not intravenous, nifedipine might increase levels and adverse effects of nifedipine.
Details
Animal research and some clinical evidence suggests that taking ginkgo leaf extract orally in combination with oral nifedipine might increase nifedipine levels and cause increased side effects, such as headaches, dizziness, and hot flushes (87764,87765). However, taking ginkgo orally does not seem to affect the pharmacokinetics of intravenous nifedipine (87765).
|
Theoretically, taking ginkgo with omeprazole might decrease the levels and clinical effects of omeprazole.
Details
Clinical research shows that a specific ginkgo leaf extract (Remembrance, Herbs Product LTD) 140 mg twice daily can induce cytochrome P450 (CYP) 2C19 enzymes and decrease levels of omeprazole by about 27% to 42% (13108).
|
Theoretically, taking ginkgo with P-glycoprotein substrates might increase the levels and adverse effects of these substrates.
Details
A small clinical study in healthy volunteers shows that using ginkgo leaf extract 120 mg orally three times daily for 14 days can increase levels of the P-glycoprotein substrate, talinolol, by 36% in healthy male individuals. However, single doses of ginkgo do not have the same effect (87830).
|
Theoretically, taking ginkgo with risperidone might increase the levels and adverse effects of risperidone.
Details
A single case of priapism has been reported for a 26-year-old male with schizophrenia who used risperidone 3 mg daily along with ginkgo extract 160 mg daily (87796). Risperidone is metabolized by cytochrome P450 (CYP) 2D6 and CYP3A4. CYP3A4 activity might be affected by ginkgo. Theoretically, ginkgo may inhibit the metabolism of risperidone and increase the risk of adverse effects.
|
Theoretically, ginkgo might decrease the levels and clinical effects of rosiglitazone.
Details
Animal research shows that ginkgo leaf extract orally 100 or 200 mg/kg daily for 10 days alters the pharmacodynamics of rosiglitazone in a dose-dependent manner. The 100 mg/kg and 200 mg/kg doses reduce the area under the concentration time curve (AUC) of rosiglitazone by 39% and 52%, respectively, and the half-life by 28% and 39%, respectively. It is hypothesized that these changes may be due to induction of cytochrome P450 2C8 by ginkgo (109525).
|
Theoretically, taking ginkgo with drugs that lower the seizure threshold might increase the risk for convulsions.
Details
Ginkgo seeds contain ginkgotoxin. Large amounts of ginkgotoxin can cause neurotoxicity and seizure. Ginkgotoxin is present in much larger amounts in ginkgo seeds than leaves (8232). Ginkgo leaf extract contains trace amounts of ginkgotoxin. The amount of ginkgotoxin in ginkgo leaf and leaf extract seems unlikely to cause toxicity (11296). However, there are anecdotal reports of seizure occurring after use of ginkgo leaf both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090,14281).
|
Theoretically, ginkgo might decrease the levels and clinical effects of simvastatin.
Details
Clinical research shows that taking ginkgo extract can reduce the area under the curve and maximum concentration of simvastatin by 32% to 39%. However, ginkgo extract does not seem to affect the cholesterol-lowering ability of simvastatin (89704).
|
Theoretically, ginkgo might increase the levels and clinical effects of sofosbuvir.
Details
Animal research in rats shows that giving a ginkgo extract 25 mg/kg orally daily for 14 days increases the area under the concentration time curve (AUC) after a single sofosbuvir dose of 40 mg/kg by 11%, increases the half-life by 60%, and increases the plasma concentration at 4 hours by 38%. This interaction appears to be related to the inhibition of intestinal P-glycoprotein by ginkgo (109524).
|
Theoretically, ginkgo might increase the blood levels of tacrolimus.
Details
In vitro evidence suggests that certain biflavonoids in ginkgo leaves (i.e. amentoflavone, ginkgetin, bilobetin) may inhibit the metabolism of tacrolimus by up to 50%. This interaction appears to be time-dependent and due to inhibition of cytochrome P450 (CYP) 3A4 by these bioflavonoids. In rats given tacrolimus 1 mg/kg orally, amentoflavone was shown to increase the area under the concentration time curve (AUC) of tacrolimus by 3.8-fold (111330).
|
Taking ginkgo with talinolol seems to increase blood levels of talinolol.
Details
There is some evidence that using ginkgo leaf extract 120 mg orally three times daily for 14 days can increase levels of talinolol by 36% in healthy male individuals. However, single doses of ginkgo do not seem to affect talinolol pharmacokinetics (87830).
|
Theoretically, ginkgo might increase the levels and clinical effects of trazodone.
Details
In a case report, an Alzheimer patient taking trazodone 20 mg twice daily and ginkgo leaf extract 80 mg twice daily for four doses became comatose. The coma was reversed by administration of flumazenil (Romazicon). Coma might have been induced by excessive GABA-ergic activity. Ginkgo flavonoids are thought to have GABA-ergic activity and act directly on benzodiazepine receptors. Ginkgo might also increase metabolism of trazodone to active GABA-ergic metabolites, possibly by inducing cytochrome P450 3A4 (CYP3A4) metabolism (6423).
|
Ginkgo has been shown to increase the risk of bleeding in some people when taken with warfarin.
Details
Several pharmacodynamic studies suggest that ginkgo inhibits platelet aggregation. It is thought that the ginkgo constituent, ginkgolide B, displaces platelet-activating factor (PAF) from its binding sites, decreasing blood coagulation (6048,9760). Several case reports have documented serious bleeding events in patients taking ginkgo (244,576,578,579,8581,13002,13135,13179,13194,14456,87868). Information from a medical database suggests that when taken concurrently with warfarin, ginkgo increases the risk of a bleeding adverse event by 38% (91326). There is also some evidence that ginkgo leaf extract can inhibit cytochrome P450 2C9, an enzyme that metabolizes warfarin. This could result in increased warfarin levels (12061). However, population and clinical research has produced mixed results. Clinical research in healthy people suggests that ginkgo has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176,87727,87889). A meta-analysis of 18 studies using standardized ginkgo extracts, 80 mg to 480 mg daily for up to 32 weeks, did not find a significant effect on platelet aggregation, fibrinogen concentration, or PT/aPTT (17179). There is also some preliminary clinical research that suggests ginkgo might not significantly increase the effects of warfarin in patients that have a stable INR (11905).
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
Details
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Details
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
Details
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
Details
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Details
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Below is general information about the adverse effects of the known ingredients contained in the product Extra Memory Formula. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, ginkgo leaf extract is generally well tolerated when used for up to 6 years.
However, the seed and crude plant contain toxic constituents and should be avoided.
Intravenously, ginkgo leaf extract seems to be well tolerated when used for up to 30 days.
Topically, no adverse effects have been reported with ginkgo as a single ingredient. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Dizziness, gastrointestinal symptoms, headache.
Serious Adverse Effects (Rare):
Orally: Arrhythmia, bleeding, Stevens-Johnson syndrome.
Cardiovascular
...Cardiac arrhythmias suspected to be related to ginkgo have been reported.
Internationally, there are at least 162 reports from 18 countries, with 34% of cases considered serious, involving five deaths and four life-threatening events. Additionally, a report from Canada found that 10 out of 15 cases of arrhythmia were considered serious. Ginkgo was the only suspect ingredient in 57% of all international reports, with symptoms generally presenting within days of initiation. The most common symptoms included palpitations, tachycardia, bradycardia, syncope, and loss of consciousness. Most cases were reported to be related to oral use of ginkgo leaf products; however, some cases were associated with oral use of the seed, and others with intravenous or intramuscular use of the leaf. Documented discontinuation of ginkgo led to recovery in approximately 84% of cases where ginkgo was the sole suspect. Despite these findings, ginkgo cannot be confirmed as the causal agent. It is possible that these reports are confounded by underlying co-morbidities. Of the reported cases, the main reason for ginkgo use was tinnitus, a symptom commonly associated with pre-existing arrhythmias (105253,105254). Despite this large number of reports, only three cases of cardiac arrhythmia have been published in the literature (105253,105254). In one case, frequent nocturnal episodes of paroxysmal atrial fibrillation were reported for a 35-year-old female taking ginkgo extract 240 mg daily orally for 2 months. Arrythmias ceased following discontinuation of ginkgo (87884).
In one clinical trial, the rate of ischemic stroke and transient ischemic attacks was significantly higher in patients taking ginkgo extract orally when compared with placebo (16635). It is unclear if these events were due to ginkgo, other factors, or a combination.
Dermatologic ...Topically, ginkgo fruit pulp can cause contact dermatitis, with intense itching, edema, papules, and pustules which take 7-10 days to resolve after stopping contact (112946).
Gastrointestinal
...Orally, ginkgo extract may cause mild gastrointestinal discomfort or pain (3965,8543,17112,87818,87858), nausea and vomiting (8543,17112,87728,87844,87858), diarrhea (87844), dry mouth (17112), and constipation (5719,87787).
However, post-market surveillance suggests that the incidence of these events is relatively low, occurring in less than 2% of patients (88007).
Fresh ginkgo seeds can cause stomach ache, nausea, vomiting, or diarrhea. Ingesting roasted seeds in amounts larger than the normal food amounts of 8-10 seeds per day, or long-term, can also cause these same adverse reactions (8231,8232).
Genitourinary ...Orally, ginkgo extract has been reported to cause blood in the urine in one patient (87858).
Hematologic
...Spontaneous bleeding is one of the most concerning potential side effects associated with ginkgo.
There are several published case reports linking ginkgo to episodes of minor to severe bleeding; however, not all case reports clearly establish ginkgo as the cause of bleeding. In most cases, other bleeding risk factors were also present including taking other medications or natural medicines, old age, liver cirrhosis, recent surgery, and other conditions. In most cases, bleeding occurred after several weeks or months of taking ginkgo (13135). Large-scale clinical trials and a meta-analysis evaluating standardized ginkgo leaf extracts show that the incidence of bleeding in patients taking ginkgo is not significantly higher than in those taking placebo (16634,16635,17179,17402).
There are several case reports of intracerebral bleeding. Some of these cases resulted in permanent neurological damage and one case resulted in death (244,578,8581,13135,13179,14456,87868,87977).
There are at least 4 cases of ocular bleeding including spontaneous hyphema (bleeding from the iris into the anterior part of the eye) and retrobulbar hemorrhage associated with ginkgo use (579,10450,13135).
There are also cases of surgical and post-surgical complications in patients using ginkgo. Retrobulbar hemorrhage (bleeding behind the eye) during cataract surgery has been associated with ginkgo use (10450). Excessive postoperative bleeding requiring transfusion has also occurred following laparoscopic surgery in a patient who had been taking ginkgo leaf extract (887). There have also been two cases of excessive bleeding during surgery and post-surgical hematoma in patients undergoing rhytidoplasty and blepharoplasty (13002). In another case, an elderly patient taking ginkgo experienced excessive postoperative bleeding following total hip arthroplasty (13194). In another case, use of ginkgo following liver transplantation surgery was associated with subphrenic hematoma requiring evacuation by laparotomy. The patient also subsequently experienced vitreous hemorrhage (14315). In another case, an elderly patient who had taken ginkgo chronically experienced excessive post-operative bleeding following an ambulatory surgical procedure (14453).
In another case, an elderly man experienced nose bleeds and ecchymosis following use of ginkgo. One case of diffuse alveolar hemorrhage in a female taking ginkgo and ginseng for over one year has been reported (95670). These instances of bleeding stopped when ginkgo was discontinued, and recurred when the patient started taking ginkgo again (13135).
Persistent bleeding has also occurred following dental surgery (87862) and laparoscopic cholecystectomy (88000). Nosebleed has also been reported as an adverse effect in a clinical trial (87813).
Immunologic ...Orally, ginkgo leaf extract can cause allergic skin reactions in some patients (14449,15578,112946). In one case, a patient developed acute generalized exanthematous pustulosis 48 hours after taking a single-ingredient ginkgo product. The rash resolved within 10 days after discontinuing ginkgo (14449). In another case, progressive erythema of the face, neck, trunk, and extremities occurred after two 60 mg oral doses of ginkgo extract (112946). There is also a case of Stevens-Johnson syndrome following a second administration of a preparation containing ginkgo leaf extract, choline, vitamin B6, and vitamin B12 (208). In another case, systemic edema and severe arthralgia was reported after contact with a ginkgo tree nut and manifested as multifocal lymphadenopathy associated with an allergic reaction on PET/CT scan imaging (95672).
Musculoskeletal ...Edema has been reported for three patients treated with ginkgo extract 40 mg orally three times daily (87818).
Neurologic/CNS ...Orally, ginkgo extract may cause headache (6220,8543,87818), dizziness (5719,87818), increased desire to sleep (87839), and sedation (10893) in some patients. In addition, although ginkgo leaf and ginkgo leaf extract contain only small amounts of ginkgotoxin, there are anecdotal reports of seizure occurring after use of ginkgo leaf preparations both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090,11296,14281).
Ocular/Otic
...Orally, ginkgo extract may cause tinnitus is some patients, although the incidence is rare (8543).
Topically, eye drops containing ginkgo extract and hyaluronic acid may cause stinging sensations in some people (87829).
Psychiatric ...Orally, ginkgo has been associated with a single case of mood dysregulation. A 50-year-old female with schizophrenia developed irritability, difficulty controlling anger, and agitation after one week of taking ginkgo 80 mg twice daily. The mood changes resolved within 2-3 days of discontinuation. When ginkgo was re-trialed at a later date, the same symptoms reappeared, and again dissipated after discontinuation of the ginkgo product. The relationship between ginkgo and mood dysregulation was considered to be "probable" based on the Naranjo adverse drug reaction probability scale (96763); however, the exact mechanism by which ginkgo may have affected mood regulation is unknown.
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).