Ingredients | Amount Per Serving |
---|---|
Calories
|
15 Calorie(s) |
Total Carbohydrates
|
4 Gram(s) |
Total Sugars
|
1 Gram(s) |
Added Sugars
|
1 Gram(s) |
(Pyridoxine Hydrochloride)
|
2 mg |
(Na)
|
70 mg |
(Fermented)
|
3000 mg |
(Fermented)
|
2000 mg |
(Fermented)
|
1000 mg |
(Fermented)
|
1000 mg |
(Beta-Alanine)
|
750 mg |
750 mg | |
(Stevia )
(leaf)
|
650 mg |
Watermelon Flavor, Natural, Citric Acid, Pure Ocean Sea Salt, Silicon Dioxide (Alt. Name: SiO2), Monk Fruit Extract, Red Beet, Powder PlantPart: root
Below is general information about the effectiveness of the known ingredients contained in the product RELOAD BCAA+G Watermelon Flavored. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product RELOAD BCAA+G Watermelon Flavored. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Oral beta-alanine, including a specific commercial product (CarnoSyn, Natural Alternatives International), has been used with apparent safety in doses up to 6.4 grams daily for 12 weeks in younger adults (14611,16025,16439,16441,18227,94357,97972,101028,101029,104144,106717), and up to 3.2 grams daily for 12 weeks in adults aged 55 years and older (16442,97955,97961,97965).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in medicinal amounts.
LIKELY SAFE ...when used orally and appropriately in doses of up to 6 grams daily (698,10631). However, some patients have used up to 20 grams daily with apparent safety (698). Betaine anhydrous is available as an FDA-approved prescription product (Cystadane) (698), and also as a supplement. The European Food Safety Authority states that betaine anhydrous is safe to use in doses up to 6 mg/kg daily, in addition to usual dietary intake (105548). There is insufficient reliable information available about the safety of topical betaine anhydrous.
CHILDREN: LIKELY SAFE
when used orally and appropriately in doses up to 150 mg/kg daily (698).
However, some patients have used up to 20 grams daily with apparent safety (698). Prescription betaine anhydrous (Cystadane) is approved by the US FDA for use in infants and children (698).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. BCAAs 12 grams daily have not been associated with significant adverse effects in studies lasting for up to 2 years (68,72,73,74,10117,10146,10147,37120,92643,97531,103351,103352). ...when used intravenously and appropriately. BCAAs are an FDA-approved injectable product (13309).
CHILDREN: LIKELY SAFE
when used orally in dietary amounts of 71-134 mg/kg daily (11120,13308).
CHILDREN: POSSIBLY SAFE
when larger, supplemental doses are used orally and appropriately for up to 6 months (13307,13308,37127).
PREGNANCY:
Insufficient reliable information available; avoid using amounts greater than those found in food.
Although adverse effects have not been reported in humans, some animal research suggests that consumption of supplemental isoleucine, a BCAA, during the first half of pregnancy may have variable effects on birth weight, possibly due to abnormal placental development (103350).
LACTATION:
Insufficient reliable information available; avoid using amounts greater than those found in food.
Although the safety of increased BCAA consumption during lactation is unclear, some clinical research suggests that a higher concentration of isoleucine and leucine in breastmilk during the first 6 months postpartum is not associated with infant growth or body composition at 2 weeks, 2 months, or 6 months (108466).
LIKELY SAFE ...when used orally and appropriately. Glutamine has been safely used in clinical research in doses up to 40 grams per day or 1 gram/kg daily (2334,2337,2338,2365,5029,5462,7233,7288,7293), (52288,52307,52308,52311,52313,52337,52349,52350,96516,97366). A specific glutamine product (Endari) is approved by the US Food and Drug Administration (FDA) (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 600 mg/kg daily in clinical trials (2363,2366,5448,5452,5453,5454,5458,7293,52272,52275), (52283,52289,52304,52306,52316,52341), (52359,52360,52371,52377,52381,52284,52385,52408,96637,96507,96516).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Glutamine has been shown to be safe in clinical research when used in amounts that do not exceed 0.7 grams/kg daily in children 1-18 years old (11364,46657,52321,52323,52363,86095,96517). A specific glutamine product (Endari) is approved by the US Food and Drug Administration for certain patients 5 years of age and older (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 0.4 grams/kg daily in clinical research (52338,96508). There is insufficient reliable information available about the safety of glutamine when used in larger amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in foods.
There is insufficient reliable information available about the safety of glutamine when used in larger amounts as medicine during pregnancy or lactation.
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
LIKELY SAFE ...when certain stevia constituents, including stevioside and rebaudiosides A, D, and M, are used orally as sweeteners in foods. These constituents have generally recognized as safe (GRAS) status in the US for this purpose (16699,16700,16702,16705,16706,108049). The stevia constituent stevioside has been safely used in doses of up to 1500 mg daily for 2 years (11809,11810,11811). There is insufficient reliable information available about the safety of whole stevia or stevia extracts when used orally. The European Food Safety Authority (EFSA) has determined that the acceptable intake of steviol glycosides is 4 mg/kg daily (106456); however, it is unclear how this relates to the use of whole stevia or stevia extract.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of 100 mg daily for adults (15). ...when used parenterally and appropriately. Injectable vitamin B6 (pyridoxine) is an FDA-approved prescription product (15).
POSSIBLY SAFE ...when used orally and appropriately in doses of 101-200 mg daily (6243,8558).
POSSIBLY UNSAFE ...when used orally in doses at or above 500 mg daily. High doses, especially those exceeding 1000 mg daily or total doses of 1000 grams or more, pose the most risk. However, neuropathy can occur with lower daily or total doses (6243,8195). ...when used intramuscularly in high doses and frequency due to potential for rhabdomyolysis (90795).
CHILDREN: LIKELY SAFE
when used orally and appropriately (3094).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in amounts exceeding the recommended dietary allowance (5049,8579,107124,107125,107135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses, long-term (3094).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
A special sustained-release product providing vitamin B6 (pyridoxine) 75 mg daily is FDA-approved for use in pregnancy. Vitamin B6 (pyridoxine) is also considered a first-line treatment for nausea and vomiting in pregnancy by the American College of Obstetrics and Gynecology (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
There is some concern that high-dose maternal vitamin B6 (pyridoxine) can cause neonatal seizures (4609,6397,8197).
LACTATION: LIKELY SAFE
when used orally in doses not exceeding the recommended dietary allowance (RDA) (3094).
The RDA in lactating women is 2 mg daily. There is insufficient reliable information available about the safety of vitamin B6 when used in higher doses in breast-feeding women.
Below is general information about the interactions of the known ingredients contained in the product RELOAD BCAA+G Watermelon Flavored. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, BCAAs might alter the effects of antidiabetes medications.
Details
|
BCAAs in large doses can reduce the effects of levodopa.
Details
BCAAs may compete with levodopa for transport systems in the intestine and brain and decrease the effectiveness of levodopa (66,2719). Small clinical studies how that concomitant ingestion of protein or high doses of leucine or isoleucine (100 mg/kg) and levodopa can exacerbate tremor, rigidity, and the "on-off" syndrome in patients with Parkinson disease (3291,3292,3293,3294).
|
Theoretically, glutamine might antagonize the effects of anticonvulsant medications.
Details
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
Details
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Details
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
Details
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
Details
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Details
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Theoretically, stevia might increase the risk for hypoglycemia when combined with antidiabetes drugs.
Details
Preliminary clinical research in patients with type 2 diabetes suggests that taking a single dose of stevia extract 1000 mg reduces postprandial blood glucose levels when taken with a meal (11812). However, other clinical research in patients with type 1 or type 2 diabetes suggests that taking stevioside 250 mg three times daily does not significantly affect blood glucose levels or glycated hemoglobin (HbA1C) after three months of treatment (16705).
|
Theoretically, combining stevia or stevia constituents with antihypertensive agents might increase the risk of hypotension.
Details
|
Theoretically, stevia might decrease clearance and increase levels of lithium.
Details
|
Theoretically, vitamin B6 might increase the photosensitivity caused by amiodarone.
Details
|
Theoretically, vitamin B6 may have additive effects when used with antihypertensive drugs.
Details
Research in hypertensive rats shows that vitamin B6 can decrease systolic blood pressure (30859,82959,83093). Similarly, clinical research in patients with hypertension shows that taking high doses of vitamin B6 may reduce systolic and diastolic blood pressure, possibly by reducing plasma levels of epinephrine and norepinephrine (83091).
|
Vitamin B6 may increase the metabolism of levodopa when taken alone, but not when taken in conjunction with carbidopa.
Details
Vitamin B6 (pyridoxine) enhances the metabolism of levodopa, reducing its clinical effects. However, this interaction does not occur when carbidopa is used concurrently with levodopa (Sinemet). Therefore, it is not likely to be a problem in most people (3046).
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenobarbital.
Details
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenytoin.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product RELOAD BCAA+G Watermelon Flavored. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, beta-alanine seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Flushing, paresthesia.
Gastrointestinal ...While rare, digestion problems have been reported with oral beta-alanine use (94341).
Neurologic/CNS ...Orally, beta-alanine can cause a dose-dependent feeling of pins and needles (paresthesias) along with skin flushing (16438,94333,94335,94338,94341,94342,94349,101028,101029,106711). This generally starts on the scalp within 20 minutes of the dose, spreading to most of the body, and lasting for about an hour. This was described as severe at a dose of 40 mg/kg, tolerable at a dose of 20 mg/kg, and very mild at a dose of 10 mg/kg. At the lowest dose it only occurred in 25% of subjects (16438). In some studies, beta-alanine has been given as frequently as 8 times per day so that each dose can be kept below 10 mg/kg (16438,16439). Other clinical research shows that taking beta-alanine in a tablet formulation eliminates the presence of parasthesias at a dose of 1.6 grams when compared with a solution made from powdered beta-alanine. This effect may be due to delayed absorption (97974,97975). Although paresthesias still occur with sustained-release formulations, their presence is less frequent when compared with immediate-release formulations (101029).
General
...Orally, betaine anhydrous is generally well tolerated.
Most Common Adverse Effects:
Orally: Body odor, diarrhea, elevated cholesterol levels, GI distress, nausea, vomiting.
Serious Adverse Effects (Rare):
Orally: Cerebral edema.
Cardiovascular ...Betaine anhydrous might have adverse effects on the plasma lipid profile. Some studies have reported a 3% to 4% increase in total and low-density lipoprotein (LDL) cholesterol levels with betaine anhydrous 6 grams daily (16452,16455,16456,34904). A meta-analysis of 6 studies in adults, some with obesity and/or prediabetes, shows that taking betaine anhydrous 4-6 grams daily for 6-24 weeks is associated with a mean increase in total cholesterol of 4 mg/dL, with no significant change in LDL cholesterol, high-density lipoprotein (HDL) cholesterol, or triglyceride levels (105814). Another meta-analysis of 12 studies, some in healthy adults and others in adults with various disease states, shows that taking betaine anhydrous 1.5-20 grams daily for 2-52 weeks is associated with a mean increase in total cholesterol of 14 mg/dL, and a mean increase in LDL cholesterol of 10 mg/dL, with no change in triglyceride or HDL cholesterol levels (105813).
Gastrointestinal ...Orally, betaine anhydrous can cause vomiting, nausea, GI distress, and diarrhea (698,10631,34888,34928,111374).
Neurologic/CNS ...When used orally to treat homocystinuria due to cystathionine beta-synthase deficiency, elevated plasma methionine concentrations can occur following use of betaine anhydrous, which might lead to cerebral edema (698,111374).
Other ...Orally, betaine anhydrous can cause body odor (698,10631).
General
...Orally or intravenously, BCAAs are generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal distension, diarrhea, nausea, vomiting.
All routes of administration: High doses can lead to fatigue and loss of motor coordination.
Cardiovascular ...Orally, a single case of hypertension following the use of BCAAs has been reported (37143).
Dermatologic ...Orally, a single case of skin blanching following the use of BCAAs has been reported (681). It is not known if this effect was due to use of BCAAs or other factors.
Gastrointestinal ...Orally, BCAAs can cause nausea, vomiting, diarrhea, and abdominal distension. Nausea and diarrhea has been reported to occur in about 10% of people taking BCAAs (10117,37143,92643,97531).
Neurologic/CNS ...Orally and intravenously, BCAAs can cause fatigue and loss of motor coordination due to increased plasma ammonia levels (693,694,10117). Short-term use of 60 grams of BCAAs containing leucine, isoleucine, and valine for 7 days in patients with normal metabolic function seems to increase levels of ammonia, but not to toxic plasma levels (10117). However, liver function should be monitored with high doses or long-term use (10117). Due to the potential of increased plasma levels of ammonia and subsequent fatigue and loss of motor coordination, BCAAs should be used cautiously before or during activities where performance depends on motor coordination (75). Orally, BCAAs may also cause headache, but this has only been reported in one clinical trial (681).
General
...Orally and intravenously, glutamine is generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, bloating, constipation, cough, diarrhea, flatulence, gastrointestinal pain, headache, musculoskeletal pain, nausea, and vomiting.
Endocrine ...One case of hot flashes has been reported in a patient taking glutamine 5-15 grams orally twice daily for up to 1 year (96520).
Gastrointestinal ...Orally, glutamine has been associated with belching, bloating, constipation, flatulence, nausea, vomiting, diarrhea, and gastrointestinal (GI) pain. Nausea, vomiting, constipation, diarrhea, and GI pain have been reported in clinical trials using high-dose glutamine 10-30 grams (0.3 grams/kg) in two divided doses daily to treat sickle cell disease (99414). One case of dyspepsia and one case of abdominal pain have been reported in patients taking glutamine 5-15 grams twice daily orally for up to 1 year (96520). In a small trial of healthy males, taking a single dose of about 60 grams (0.9 grams/kg of fat free body mass [FFM]) was associated with a 50% to 79% incidence of GI discomfort, nausea, and belching, compared with a 7% to 28% incidence with a lower dose of about 20 grams (0.3 gram/kg FFM). Flatulence, bloating, lower GI pain, and urge to regurgitate occurred at similar rates regardless of dose, and there were no cases of heartburn, vomiting, or diarrhea/constipation (105013). It is possible that certain GI side effects occur only after multiple doses of glutamine.
Musculoskeletal ...Orally, glutamine 30 grams daily has been associated with cases of musculoskeletal pain and non-cardiac chest pain in clinical trials for patients with sickle cell disease (99414).
Neurologic/CNS ...Orally, glutamine has been associated with dizziness and headache. A single case of dizziness has been reported in a patient treated with oral glutamine 0.5 grams/kg. However, the symptom resolved after reducing the dose to 0.25 grams/kg (91356). Mania and hypomania have been reported in 2 patients with bipolar disorder taking commercially purchased glutamine up to 4 grams daily (7291). Glutamine is metabolized to glutamate and ammonia, both of which might have neurological effects in people with neurological and psychiatric diseases or in people predisposed to hepatic encephalopathy (7293).
Oncologic ...There is some concern that glutamine might be used by rapidly growing tumors and possibly stimulate tumor growth. Although tumors may utilize glutamine and other amino acids, preliminary research shows that glutamine supplementation does not increase tumor growth (5469,7233,7738). In fact, there is preliminary evidence that glutamine might actually reduce tumor growth (5469).
Other ...Orally, glutamine has been associated with cough when a powdered formulation is used. It is unclear if this was due to accidental inhalation. One case of a burning sensation and one case of hypersplenism has been reported in a patient taking glutamine 5-15 grams twice daily orally for up to 1 year (96520).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General
...Orally, stevia and steviol glycosides appear to be well tolerated.
Most minor adverse effects seem to resolve after the first week of use.
Most Common Adverse Effects:
Abdominal bloating, dizziness, headache, myalgia, nausea, and numbness.
Serious Adverse Effects (Rare):
Allergic reactions.
Gastrointestinal ...Orally, stevia and steviol glycosides such as stevioside, can cause gastrointestinal adverse effects such as abdominal fullness and nausea. However, these generally resolve after the first week of use (11809,11810).
Immunologic ...Theoretically, stevia might cause allergic reactions in individuals sensitive to plants in the Asteraceae/Compositae family (11811). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Musculoskeletal ...Orally, stevia and steviol glycosides may cause myalgia, but this generally resolves after the first week of use (11809,11810).
Neurologic/CNS ...Orally, stevia and steviol glycosides may cause headache, dizziness, and numbness (11809,11810).
General
...Orally or by injection, vitamin B6 is well tolerated in doses less than 100 mg daily.
Most Common Adverse Effects:
Orally or by injection: Abdominal pain, allergic reactions, headache, heartburn, loss of appetite, nausea, somnolence, vomiting.
Serious Adverse Effects (Rare):
Orally or by injection: Sensory neuropathy (high doses).
Dermatologic ...Orally, vitamin B6 (pyridoxine) has been linked to reports of skin and other allergic reactions and photosensitivity (8195,9479,90375). High-dose vitamin B6 (80 mg daily as pyridoxine) and vitamin B12 (20 mcg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may persist for up to 4 months after the supplement is stopped, and may require treatment with systemic corticosteroids and topical therapy (10998).
Gastrointestinal ...Orally or by injection, vitamin B6 (pyridoxine) can cause nausea, vomiting, heartburn, abdominal pain, mild diarrhea, and loss of appetite (8195,9479,16306,83064,83103,107124,107127,107135). In a clinical trial, one patient experienced infectious gastroenteritis that was deemed possibly related to taking vitamin B6 (pyridoxine) orally up to 20 mg/kg daily (90796). One small case-control study has raised concern that long-term dietary vitamin B6 intake in amounts ranging from 3.56-6.59 mg daily can increase the risk of ulcerative colitis (3350).
Hematologic ...Orally or by injection, vitamin B6 (pyridoxine) can cause decreased serum folic acid concentrations (8195,9479). One case of persistent bleeding of unknown origin has been reported in a clinical trial for a patient who used vitamin B6 (pyridoxine) 100 mg twice daily on days 16 to 35 of the menstrual cycle (83103). It is unclear if this effect was due to vitamin B6 intake.
Musculoskeletal ...Orally or by injection, vitamin B6 (pyridoxine) can cause breast soreness or enlargement (8195).
Neurologic/CNS ...Orally or by injection, vitamin B6 (pyridoxine) can cause headache, paresthesia, and somnolence (8195,9479,16306). Vitamin B6 (pyridoxine) can also cause sensory neuropathy, which is related to daily dose and duration of intake. Doses exceeding 1000 mg daily or total doses of 1000 grams or more pose the most risk, although neuropathy can occur with lower daily or total doses as well (8195). The mechanism of the neurotoxicity is unknown, but is thought to occur when the liver's capacity to phosphorylate pyridoxine via the active coenzyme pyridoxal phosphate is exceeded (8204). Some researchers recommend taking vitamin B6 as pyridoxal phosphate to avoid pyridoxine neuropathy, but its safety is unknown (8204). Vitamin B6 (pyridoxine) neuropathy is characterized by numbness and impairment of the sense of position and vibration of the distal limbs, and a gradual progressive sensory ataxia (8196,10439). The syndrome is usually reversible with discontinuation of pyridoxine at the first appearance of neurologic symptoms. Residual symptoms have been reported in patients taking more than 2 grams daily for extended periods (8195,8196). Tell patients daily doses of 100 mg or less are unlikely to cause problems (3094).
Oncologic ...In females, population research has found that a median intake of vitamin B6 1. 63 mg daily is associated with a 3.6-fold increased risk of rectal cancer when compared with a median intake of 1.05 mg daily (83024). A post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378). Also, in patients with nasopharyngeal carcinoma, population research has found that consuming at least 8.6 mg daily of supplemental vitamin B6 during treatment was associated with a lower overall survival rate over 5 years, as well as a reduced progression-free survival, when compared with non-users and those with intakes of up to 8.6 mg daily (107134).