Ingredients | Amount per packet |
---|---|
Calories
|
10 {Calories} |
Total Carbohydrates
|
2 Gram(s) |
Chloride
(from Glucosamine Sulfate)
(Chloride (Form: from Glucosamine Sulfate) )
|
234 mg |
(Na)
|
150 mg |
(Shrimp)
(stabilized)
(Glucosamine Sulfate (Form: Shrimp Shells) Note: stabilized )
|
1.5 Gram(s) |
(Stevia rebaudiana )
(leaf)
|
35 mg |
Sorbitol, Citric Acid, Natural Flavors, Mannitol, Riboflavin color, Soy Lecithin
Below is general information about the effectiveness of the known ingredients contained in the product GS-1500 1500 mg of Glucosamine Sulfate Orange Flavored. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product GS-1500 1500 mg of Glucosamine Sulfate Orange Flavored. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when glucosamine sulfate is used orally and appropriately. Glucosamine sulfate has been used safely in multiple clinical trials at a dose of 1000-1500 mg daily for 4 weeks to 3 years (2604,7026,8942,11340,12461)(14305,16717,89558,89567,94380,94382,95785).
POSSIBLY SAFE ...when glucosamine hydrochloride is used orally and appropriately. Glucosamine hydrochloride has been used with apparent safety at a dose of 1400-1600 mg daily for up to 2 years (4237,13579,14809,18344,42477,89516,89519,95784). Glucosamine hydrochloride 2 grams daily has also been used with apparent safety for up to 3 weeks (103281). ...when N-acetyl glucosamine is used orally and appropriately. N-acetyl glucosamine 100 mg daily has been used with apparent safety for up to 24 weeks (95795). ...when N-acetyl glucosamine is applied topically and appropriately. A 2% N-acetyl glucosamine cream has been safely used for up to 10 weeks (92721). ...when N-acetyl glucosamine is used rectally and appropriately. N-acetyl glucosamine 3-4 grams daily in 2 divided doses has been safely used (10234). ...when glucosamine sulfate is used intramuscularly and appropriately, short-term. Intramuscular glucosamine sulfate seems to be well tolerated when given twice weekly for up to 6 weeks (2605).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
LIKELY SAFE ...when certain stevia constituents, including stevioside and rebaudiosides A, D, and M, are used orally as sweeteners in foods. These constituents have generally recognized as safe (GRAS) status in the US for this purpose (16699,16700,16702,16705,16706,108049). The stevia constituent stevioside has been safely used in doses of up to 1500 mg daily for 2 years (11809,11810,11811). There is insufficient reliable information available about the safety of whole stevia or stevia extracts when used orally. The European Food Safety Authority (EFSA) has determined that the acceptable intake of steviol glycosides is 4 mg/kg daily (106456); however, it is unclear how this relates to the use of whole stevia or stevia extract.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product GS-1500 1500 mg of Glucosamine Sulfate Orange Flavored. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Acetaminophen might interfere with the activity of glucosamine sulfate by interacting with the sulfate portion.
Details
Anecdotal reports suggest that adding glucosamine to an acetaminophen regimen might decrease pain control in patients with osteoarthritis (14806). Some research suggests that the sulfate portion of glucosamine sulfate might contribute to its effect in osteoarthritis. Since acetaminophen metabolism requires sulfur and reduces serum sulfate concentrations, acetaminophen could theoretically interfere with the action of glucosamine sulfate. Conversely, the administration of sulfate could theoretically decrease the effectiveness of acetaminophen in sulfate-deficient people by increasing its clearance (10313).
|
Despite initial concerns, it is unlikely that glucosamine will interfere with the effects of antidiabetes drugs.
Details
In vitro and animal research has suggested that glucosamine might increase insulin resistance or decrease insulin production (371,372,3406,18342,18343). This has raised concerns that taking glucosamine might worsen diabetes and decrease the effectiveness of diabetes drugs. However, clinical research suggests that glucosamine does not have adverse effects on blood glucose or glycated hemoglobin (HbA1C) in healthy, obese, or type 2 diabetes patients (7026,7075,8942,10311,10317,15111).
|
Theoretically glucosamine may induce resistance to topoisomerase II inhibitors.
Details
In vitro research suggests that glucosamine might induce resistance to etoposide (VP16, VePesid) and doxorubicin (Adriamycin) by reducing inhibition of topoisomerase II, an enzyme required for DNA replication in tumor cells (7639). This effect has not been reported in humans.
|
Glucosamine might increase the anticoagulant effects of warfarin and increase the risk of bruising and bleeding.
Details
In two individual case reports, glucosamine/chondroitin combinations were associated with a significant increase in international normalized ratio (INR) in patients previously stabilized on warfarin (11389,16130). In one case, the increase in INR occurred only after tripling the dose of a glucosamine/chondroitin supplement from 500 mg/400 mg daily to 1500/1200 mg daily (16130). Additionally, 20 voluntary case reports to the U.S. Food & Drug Administration (FDA) have linked glucosamine plus chondroitin with increased INR, bruising, and bleeding in patients who were also taking warfarin (16130). There have also been 20 additional case reports to the World Health Organization (WHO) that link glucosamine alone to increased INR in patients taking warfarin (16131). The mechanism of this interaction is unclear. Glucosamine is a small component of heparin, but is not thought to have anticoagulant activity; however, animal research suggests that it might have antiplatelet activity (16131).
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
Details
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Details
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
Details
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
Details
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Details
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Theoretically, stevia might increase the risk for hypoglycemia when combined with antidiabetes drugs.
Details
Preliminary clinical research in patients with type 2 diabetes suggests that taking a single dose of stevia extract 1000 mg reduces postprandial blood glucose levels when taken with a meal (11812). However, other clinical research in patients with type 1 or type 2 diabetes suggests that taking stevioside 250 mg three times daily does not significantly affect blood glucose levels or glycated hemoglobin (HbA1C) after three months of treatment (16705).
|
Theoretically, combining stevia or stevia constituents with antihypertensive agents might increase the risk of hypotension.
Details
|
Theoretically, stevia might decrease clearance and increase levels of lithium.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product GS-1500 1500 mg of Glucosamine Sulfate Orange Flavored. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, all forms of glucosamine seem to be well tolerated.
Topically and rectally, N-acetyl glucosamine also seems to be well tolerated. Intramuscularly, glucosamine sulfate seems to be well tolerated. However, a thorough evaluation of safety outcomes has not been conducted for non-oral routes of administration.
Most Common Adverse Effects:
Orally: Bloating, constipation, cramps, diarrhea, heartburn, nausea.
Serious Adverse Effects (Rare):
Orally: There have been rare reports of severe allergic reactions and hepatotoxicity.
Cardiovascular
...One case of mesenteric occlusion in a clinical trial was considered possibly related to use of oral glucosamine hydrochloride and chondroitin sulfate (89520).
Some observational research has found that glucosamine use in patients with osteoarthritis is associated with a higher risk of cardiovascular disease (CVD) events when compared with non-use (109642). However, glucosamine users tended to be older, have multiple comorbidities, and be on antihyperlipidemic or antiplatelet therapy. Furthermore, other observational research in healthy adults has found that glucosamine use is associated with a reduced risk of fatal and non-fatal CVD events (99682). Higher quality, prospective research is needed to clarify the relationship, if any, between glucosamine and CVD risk.
Dermatologic ...Orally, glucosamine might cause skin reactions, including itching, rash, and erythema (2608,20084,89567,110628,113636). Also, fingernail and toenail toughening, with an increased rate of growth, has been reported (89572). Topically, N-acetyl glucosamine 2% with niacinamide 4% cream might cause rare skin reactions (92721). Photosensitization that was reproducible with re-challenge was reported in a case report of an individual using glucosamine (form unknown) and chondroitin (10408).
Endocrine ...Orally, glucosamine does not seem to impact blood glucose. Preliminary research and anecdotal reports have found that various forms of glucosamine might increase insulin resistance or decrease insulin production, increasing fasting plasma glucose levels (22,371,372,1203,3406,5059,7637,14810). This has raised concerns that taking glucosamine sulfate might worsen diabetes and decrease the effectiveness of diabetes drugs. However, clinical research suggests that various forms of glucosamine do not have adverse effects on blood glucose or glycated hemoglobin (HbA1C) in healthy, obese, patients with type 2 diabetes or impaired glucose tolerance (7026,7075,7638,8942,10311,10317,12107,14808,15111,89563).
Gastrointestinal ...Orally, glucosamine has been associated with gastrointestinal problems, including epigastric and abdominal pain, cramps, heartburn, diarrhea, nausea, dyspepsia, vomiting, constipation, and flatulence (1520,2608,16717,20084,20104,20105,89561,89562,89567,89568)(108897,110628,111647,113636). In older persons, use of glucosamine sulfate is associated with oral dryness (89564). In a clinical trial, a case of Helicobacter pylori gastritis was considered probably related to the use of glucosamine hydrochloride (89516).
Hepatic ...Although relatively uncommon, combinations of glucosamine and chondroitin sulfate have been associated with acute liver injury that mimics autoimmune hepatitis. Of 151 patients at an outpatient clinic for liver diseases, 23 acknowledged use of products containing glucosamine (form unspecified) and/or chondroitin. However, only 2 cases had an apparent relationship between transaminase elevation and the use of recommended doses of glucosamine and chondroitin sulfate. Aminotransferase levels, which were increased by four- to seven-fold, returned to normal following discontinuation of treatment (89515). In another case, a 65-year-old male presented to the hospital with signs and symptoms of drug-induced autoimmune hepatitis. The patient had used Condrosulf, containing chondroitin sulfate, for two years, followed by Vita Mobility Complex, containing chondroitin sulfate and glucosamine sulfate, for 8 weeks. The patient required maintenance treatment with azathioprine to remain in remission (89518). A case of acute cholestatic hepatitis due to Glucosamine Forte, which contains glucosamine hydrochloride, chondroitin sulfate, Devil's claw, and shark cartilage, has been reported (89522). It is unclear whether these adverse events were related to glucosamine, other ingredients, or the combination.
Immunologic ...There is some concern that glucosamine products might cause allergic reactions in sensitive individuals. One review of glucosamine-related adverse events in Australia found that 72% of all reports involved hypersensitivity reactions. Of these reactions, 35% were mild, including pruritis, urticaria, and lip edema, 49% were moderate, including dyspnea, and 16% were severe, including gait disturbance, somnolence, and hypotension. Anaphylaxis was reported in 1.5% of cases (102115). Also, in one clinical trial, a single patient developed allergic dermatitis considered to be likely due to glucosamine hydrochloride (89516). Glucosamine is derived from the exoskeletons of shrimp, lobster, and crabs. However, it is unclear if these adverse reactions were due to a shellfish sensitivity or general atopy. Additionally, shellfish allergies are caused by IgE antibodies to antigens in the meat of shellfish, not to antigens in the exoskeleton. Regardless, it is possible that some glucosamine products might be contaminated by this allergen during production (102115).
Neurologic/CNS ...Orally, glucosamine has been reported to cause drowsiness and headache (2608,89561,113636). Glucosamine plus chondroitin combination products that also contain manganese (e.g., CosaminDS) should always be taken according to product directions. When taken at doses slightly higher than the recommended dose, these products can sometimes supply greater than the tolerable upper limit (UL) for manganese which is 11 mg/day. Ingestion of more than 11 mg/day of manganese might cause significant central nervous system toxicity (7135).
Ocular/Otic ...In older persons, use of glucosamine sulfate has been associated with ocular dryness (89564). Increased intraocular pressure has occurred with glucosamine sulfate supplementation (89573,112460). Data from the FDA MedWatch adverse event reporting system shows that 0.21% of subjects taking glucosamine reported glaucoma, which is significantly greater than the 0.08% of subjects who reported glaucoma while using any other drug (112460).
Pulmonary/Respiratory ...Cases of asthma exacerbations associated with the use of glucosamine (form unknown)-chondroitin products have been reported (10002).
Renal ...Anecdotal reports have associated glucosamine with nephrotoxicity signals such as modestly elevated creatine phosphokinase and 1+ to 2+ proteinuria, but changes in kidney function have not been reported in long-term studies (7026,8942,10408,10409). It was also noted that effects may have been due to other concurrent medications or impurities in glucosamine-chondroitin products. Cases of acute interstitial nephritis induced by glucosamine (form unknown) have also been reported (89523).
Other ...There has been concern that glucosamine might increase the risk of metabolic disturbances resulting in increased cholesterol levels and blood pressure. However, glucosamine does not appear to increase the risk of these adverse effects. Taking glucosamine sulfate for up to 3 years does not significantly increase blood glucose or lipid levels, or cause any other disturbances in metabolism (7026,7075,8942,10311,10317).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General
...Orally, stevia and steviol glycosides appear to be well tolerated.
Most minor adverse effects seem to resolve after the first week of use.
Most Common Adverse Effects:
Abdominal bloating, dizziness, headache, myalgia, nausea, and numbness.
Serious Adverse Effects (Rare):
Allergic reactions.
Gastrointestinal ...Orally, stevia and steviol glycosides such as stevioside, can cause gastrointestinal adverse effects such as abdominal fullness and nausea. However, these generally resolve after the first week of use (11809,11810).
Immunologic ...Theoretically, stevia might cause allergic reactions in individuals sensitive to plants in the Asteraceae/Compositae family (11811). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Musculoskeletal ...Orally, stevia and steviol glycosides may cause myalgia, but this generally resolves after the first week of use (11809,11810).
Neurologic/CNS ...Orally, stevia and steviol glycosides may cause headache, dizziness, and numbness (11809,11810).