Ingredients | Amount Per Serving |
---|---|
Dietary Fiber
|
<1 Gram(s) |
(Potassium Ascorbate)
(Vitamin C (Form: as Potassium Ascorbate) )
|
100 mg |
(Inositol Hexanicotinate)
(Niacin (Form: as Inositol Hexaniacinate) )
|
250 mg |
Guggul gum extract
(gum)
(standardized to 2.5% Guggulsterones)
(Guggul gum extract (Form: standardized to 2.5% Guggulsterones Note: 6.25 mg) PlantPart: gum )
|
250 mg |
(rhizome)
|
200 mg |
Cellulose, Stearic Acid (Alt. Name: C18:0), Modified Cellulose, modified Cellulose Gum, Magnesium Stearate, Titanium Dioxide color, Silicon Dioxide (Alt. Name: SiO2), Soy Lecithin, Vegetable Glycerin, Carnauba Wax
Below is general information about the effectiveness of the known ingredients contained in the product GugulPlex. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product GugulPlex. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
LIKELY SAFE ...when niacin is taken in food or as a supplement in amounts below the tolerable upper intake level (UL) of 30 mg daily for adults 18 years of age and 35 mg daily for adults 19 years and older (6243). ...when prescription products are used orally and appropriately in doses of up to 2 grams daily (12033). CHILDREN:
LIKELY SAFE ...when used orally in amounts that do not exceed the tolerable upper intake level (UL). The ULs of niacin for children are: 1-3 years of age, 10 mg daily; 4-8 years of age, 15 mg daily; 9-13 years of age, 20 mg daily; 14-18 years of age, 30 mg daily (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL).
The UL of niacin during pregnancy and lactation is 30 mg daily for 14-18 years of age and 35 mg daily for 19 years and older (6243).
There is insufficient reliable information available about the safety of larger oral doses of niacin during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
Below is general information about the interactions of the known ingredients contained in the product GugulPlex. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Details
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
Details
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
Details
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
Details
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
Details
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
Details
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
Details
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
Details
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Details
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
Details
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Details
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Details
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Concomitant use of alcohol and niacin might increase the risk of flushing and hepatotoxicity.
Details
Alcohol can exacerbate the flushing and pruritus associated with niacin (4458,11689). Large doses of niacin might also exacerbate liver dysfunction associated with chronic alcohol use. A case report describes delirium and lactic acidosis in a patient taking niacin 3 grams daily who ingested 1 liter of wine (14510). Advise patients to avoid large amounts of alcohol while taking niacin.
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as allopurinol.
Details
Large doses of niacin can reduce urinary excretion of uric acid, potentially resulting in hyperuricemia (4860,4863,12033). Doses of uricosurics such as allopurinol might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin may have additive effects when used with anticoagulant or antiplatelet drugs.
Details
|
Niacin can increase blood glucose levels and may diminish the effects of antidiabetes drugs.
Details
Niacin impairs glucose tolerance in a dose-dependent manner, probably by causing or aggravating insulin resistance and increasing hepatic production of glucose (4860,4863,11692,11693). In diabetes patients, niacin 4.5 grams daily for 5 weeks can increase plasma glucose by an average of 16% and glycated hemoglobin (HbA1c) by 21% (4860). However, lower doses of 1.5 grams daily or less appear to have minimal effects on blood glucose (12033). In some patients, glucose levels increase when niacin is started, but then return to baseline when a stable dose is reached (12033,93344). Up to 35% of patients with diabetes may need adjustments in hypoglycemic therapy when niacin is added (4458,4860,4863,11689,12033).
|
Theoretically, niacin may increase the risk of hypotension when used with antihypertensive drugs.
Details
The vasodilating effects of niacin can cause hypotension (4863,12033,93341). Furthermore, some clinical evidence suggests that a one-hour infusion of niacin can reduce systolic, diastolic, and mean blood pressure in hypertensive patients. This effect is not observed in normotensive patients (25917).
|
Large doses of aspirin might alter the clearance of niacin.
Details
Aspirin is often used with niacin to reduce niacin-induced flushing (4458,11689). Doses of 80-975 mg aspirin have been used, but 325 mg appears to be optimal (4458,4852,4853,11689). Aspirin also seems to reduce the clearance of niacin by competing for glycine conjugation. Taking aspirin 1 gram seems to reduce niacin clearance by 45% (14524). This is probably a dose-related effect and not clinically significant with the more common aspirin dose of 325 mg (11689,14524).
|
Bile acid sequestrants can bind niacin and decrease absorption. Separate administration by 4-6 hours to avoid an interaction.
Details
In vitro studies show that colestipol (Colestid) binds about 98% of available niacin and cholestyramine (Questran) binds 10% to 30% (14511).
|
Theoretically, concomitant use of niacin and gemfibrozil might increase the risk of myopathy in some patients.
Details
|
Theoretically, concomitant use of niacin and hepatotoxic drugs might increase the risk of hepatotoxicity.
Details
|
Theoretically, concomitant use of niacin and statins might increase the risk of myopathy and rhabdomyolysis in some patients.
Details
Some case reports have raised concerns that niacin might increase the risk of myopathy and rhabdomyolysis when combined with statins (14508,25918). However, a significantly increased risk of myopathy has not been demonstrated in clinical trials, including those using an FDA-approved combination of lovastatin and niacin (Advicor) (7388,11689,12033,14509).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as probenecid.
Details
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as probenecid might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as sulfinpyrazone.
Details
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as sulfinpyrazone might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of thyroid hormones.
Details
Clinical research and case reports suggests that taking niacin can reduce serum levels of thyroxine-binding globulin by up to 25% and moderately reduce levels of thyroxine (T4) (25916,25925,25926,25928). Patients taking thyroid hormone for hypothyroidism might need dose adjustments when using niacin.
|
Theoretically, concomitant use of niacin and transdermal nicotine might increase the risk of flushing and dizziness.
Details
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
Details
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Details
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Details
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
Details
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
Details
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Details
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Details
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Below is general information about the adverse effects of the known ingredients contained in the product GugulPlex. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...Orally, niacin is well tolerated in the amounts found in foods.
It is also generally well tolerated in prescription doses when monitored by a healthcare provider.
Most Common Adverse Effects:
Orally: Flushing, gastrointestinal complaints (abdominal pain, constipation, diarrhea, heartburn, nausea, vomiting), and elevated liver enzymes.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity, myopathy, thrombocytopenia, and vision changes.
Cardiovascular
...Orally, flushing is a common dose-related adverse reaction to niacin.
A large meta-analysis of clinical studies shows that up to 70% of patients may experience flushing (96211). Although flushing can occur with doses of niacin as low as 30 mg daily, it is more common with the larger doses used for treatment of dyslipidemia. The flushing reaction is due to prostaglandin-induced blood vessel dilation and can also include symptoms of burning, tingling, urticaria, erythema, pain, and itching of the face, arms, and chest. There may also be increased intracranial blood flow and headache (4889,26089,93341,104933). Onset is highly variable and ranges from within 30 minutes to as long as 6 weeks after the initial dose (6243). Flushing can be minimized via various strategies, including taking doses with meals, slow dose titration, using extended release formulations, pretreating with non-steroidal anti-inflammatory drugs, taking regular-release niacin with meals, or taking the sustained-release product at bedtime (4852,4853,4854,4857,4858,25922,26073,26084). Flushing often diminishes with continued use but can recur when niacin is restarted after missed doses (4863,6243,26081). The vasodilating effects of niacin can also cause hypotension, dizziness, tachycardia, arrhythmias, syncope, and vasovagal attacks, especially in patients who are already taking antihypertensive drugs (4863,12033,93341,110494).
High doses of niacin can raise homocysteine levels. A 17% increase has been reported with 1 gram daily and a 55% increased has been reported with 3 grams daily. Elevated homocysteine levels are an independent risk factor for cardiovascular disease (490); however, the clinical significance of this effect is unknown. A large-scale study (AIM-HIGH) found that patients receiving extended-release niacin (Niaspan) 1500-2000 mg daily with a statin had an over two-fold increased risk of ischemic stroke (1.6%) when compared with those receiving only simvastatin (0.7%). However, when the risk was adjusted for confounding factors, niacin was not found to be associated with increased stroke risk (17627,93354). A meta-analysis of three clinical trials conducted in approximately 29,000 patients showed a higher risk of mortality in patients taking niacin in addition to a statin when compared with a statin alone. However, with a p-value of 0.05 and confidence interval including 1, the validity of this finding remains unclear (97308).
Endocrine
...Orally, niacin can impair glucose tolerance in a dose-dependent manner.
Dosages of 3-4 grams daily appear to increase blood glucose in patients with or without diabetes, while dosages of 1.5 grams daily or less have minimal effects (12033). Niacin is thought to impair glucose tolerance by increasing insulin resistance or increasing hepatic output of glucose (4863,11692,11693). In patients with diabetes, niacin 4.5 grams daily for 5 weeks has been associated with an average 16% increase in plasma glucose and 21% increase in glycated hemoglobin (HbA1C) (4860). Up to 35% of patients with diabetes may need to increase the dose or number of hypoglycemic agents when niacin is started (4458,4860,4863,11689,12033). Occasionally, severe hyperglycemia requiring hospitalization can occur (11693). In patients with impaired fasting glucose levels, niacin may also increase fasting blood glucose, and adding colesevelam might attenuate this effect (93343).
Although patients without diabetes seem to only experience small and clinically insignificant increases in glucose (4458), niacin might increase their risk of developing diabetes. A meta-analysis of clinical research involving over 26,000 patients shows that using niacin over 5 years is associated with increased prevalence of new onset type 2 diabetes at a rate of 1 additional case of diabetes for every 43 patients treated with niacin (96207). This finding is limited because the individual trials were not designed to assess diabetes risk and the analysis could not be adjusted for confounding factors like obesity. One small clinical study shows that taking extended-release niacin with ezetimibe/simvastatin does not increase the risk of a new diagnosis of diabetes or need for antidiabetic medication when compared with ezetimibe/simvastatin alone after 16 months (93344). This may indicate that the increased risk of developing diabetes is associated with niacin use for more than 16 months.
Niacin therapy has also been linked with hypothyroidism and its associated alterations in thyroid hormone and binding globulin tests (such as decreased total serum thyroxine, increased triiodothyronine, decreased thyroxine-binding globulin levels, and increased triiodothyronine uptake) (25916,25925,25926,25928).
Gastrointestinal ...Orally, large doses of niacin can cause gastrointestinal disturbances including nausea, vomiting, bloating, heartburn, abdominal pain, anorexia, diarrhea, constipation, and activation of peptic ulcers (4458,4863,12033,26083,93341,96211). These effects may be reduced by taking the drug with meals or antacid, and usually disappear within two weeks of continued therapy (4851,26094). Gastrointestinal effects may be more common with time-release preparations of niacin (11691).
Hematologic ...Orally, sustained-release niacin has been associated with cases of reversible coagulopathy, mild eosinophilia, and decreased platelet counts (4818,25915,26097,93340). Also, there have been reports of patients who developed leukopenia while taking niacin for the treatment of hypercholesterolemia (25916).
Hepatic ...Orally, niacin is associated with elevated liver function tests and jaundice, especially with doses of 3 grams/day or more, and when doses are rapidly increased (4458,4863,6243). The risk of hepatotoxicity appears to be higher with slow-release and extended-release products (4855,4856,4863,6243,11691,12026,12033,93342). Niacin should be discontinued if liver function tests rise to three times the upper limit of normal (4863). There are rare cases of severe hepatotoxicity with fulminant hepatitis and encephalopathy due to niacin (4863,6243,11691). Also, there is at least one case of niacin-induced coagulopathy resulting from liver injury without liver enzyme changes (93340).
Musculoskeletal ...Orally, niacin has been associated with elevated creatine kinase levels (4818,4888). Also, several cases of niacin-induced myopathy have been reported (26100,26111). Concomitant administration of niacin and HMG-CoA reductase inhibitors may increase the risk of myopathy and rhabdomyolysis (14508,25918,26111); patients should be monitored closely.
Neurologic/CNS ...Orally, high-dose niacin has been associated with cases of neuropsychiatric adverse events such as extreme pain and psychosis. Two 65-year-old males taking niacin orally for 5 months for the treatment of dyslipidemias developed severe dental and gingival pain. The pain was relieved by the discontinuation of niacin. The pain was thought to be due to inflammation and pain referral to the teeth (4862). In one case report, a 52-year-old male with no history of psychiatric illness who initially complained of hot flushes when taking niacin 500 mg daily, presented with an acute psychotic episode involving mania after niacin was increased to 1000 mg daily (93350).
Ocular/Otic ...Orally, chronic use of large amounts of niacin has been associated with dry eyes, toxic amblyopia, blurred vision, eyelid swelling, eyelid discoloration, loss of eyebrows and eyelashes, proptosis, keratitis, macular edema, and cystic maculopathy, which appear to be dose-dependent and reversible (4863,6243,26112).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).